@@ -192,7 +192,7 @@ theorem ext {φ₁ φ₂ : A →ₐ[R] B} (H : ∀ x, φ₁ x = φ₂ x) : φ₁
192
192
193
193
@[simp]
194
194
theorem mk_coe {f : A →ₐ[R] B} (h₁ h₂ h₃ h₄ h₅) : (⟨⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩, h₅⟩ : A →ₐ[R] B) = f :=
195
- ext fun _ => rfl
195
+ rfl
196
196
197
197
@[simp]
198
198
theorem commutes (r : R) : φ (algebraMap R A r) = algebraMap R B r :=
@@ -285,15 +285,15 @@ theorem comp_toRingHom (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :
285
285
286
286
@[simp]
287
287
theorem comp_id : φ.comp (AlgHom.id R A) = φ :=
288
- ext fun _x => rfl
288
+ rfl
289
289
290
290
@[simp]
291
291
theorem id_comp : (AlgHom.id R B).comp φ = φ :=
292
- ext fun _x => rfl
292
+ rfl
293
293
294
294
theorem comp_assoc (φ₁ : C →ₐ[R] D) (φ₂ : B →ₐ[R] C) (φ₃ : A →ₐ[R] B) :
295
295
(φ₁.comp φ₂).comp φ₃ = φ₁.comp (φ₂.comp φ₃) :=
296
- ext fun _x => rfl
296
+ rfl
297
297
298
298
/-- R-Alg ⥤ R-Mod -/
299
299
def toLinearMap : A →ₗ[R] B where
@@ -316,7 +316,7 @@ theorem comp_toLinearMap (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
316
316
317
317
@[simp]
318
318
theorem toLinearMap_id : toLinearMap (AlgHom.id R A) = LinearMap.id :=
319
- LinearMap.ext fun _ => rfl
319
+ rfl
320
320
321
321
/-- Promote a `LinearMap` to an `AlgHom` by supplying proofs about the behavior on `1` and `*`. -/
322
322
@[simps]
@@ -330,20 +330,18 @@ def ofLinearMap (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ x y, f (x
330
330
331
331
@[simp]
332
332
theorem ofLinearMap_toLinearMap (map_one) (map_mul) :
333
- ofLinearMap φ.toLinearMap map_one map_mul = φ := by
334
- ext
333
+ ofLinearMap φ.toLinearMap map_one map_mul = φ :=
335
334
rfl
336
335
337
336
@[simp]
338
337
theorem toLinearMap_ofLinearMap (f : A →ₗ[R] B) (map_one) (map_mul) :
339
- toLinearMap (ofLinearMap f map_one map_mul) = f := by
340
- ext
338
+ toLinearMap (ofLinearMap f map_one map_mul) = f :=
341
339
rfl
342
340
343
341
@[simp]
344
342
theorem ofLinearMap_id (map_one) (map_mul) :
345
343
ofLinearMap LinearMap.id map_one map_mul = AlgHom.id R A :=
346
- ext fun _ => rfl
344
+ rfl
347
345
348
346
theorem map_smul_of_tower {R'} [SMul R' A] [SMul R' B] [LinearMap.CompatibleSMul A B R' R] (r : R')
349
347
(x : A) : φ (r • x) = r • φ x :=
@@ -358,8 +356,8 @@ instance End : Monoid (A →ₐ[R] A) where
358
356
mul := comp
359
357
mul_assoc ϕ ψ χ := rfl
360
358
one := AlgHom.id R A
361
- one_mul ϕ := ext fun x => rfl
362
- mul_one ϕ := ext fun x => rfl
359
+ one_mul ϕ := rfl
360
+ mul_one ϕ := rfl
363
361
364
362
@[simp]
365
363
theorem one_apply (x : A) : (1 : A →ₐ[R] A) x = x :=
@@ -458,11 +456,11 @@ theorem ext_id (f g : R →ₐ[R] A) : f = g := Subsingleton.elim _ _
458
456
section MulDistribMulAction
459
457
460
458
instance : MulDistribMulAction (A →ₐ[R] A) Aˣ where
461
- smul := fun f => Units.map f
462
- one_smul := fun x => by ext; rfl
463
- mul_smul := fun x y z => by ext; rfl
464
- smul_mul := fun x y z => by ext; exact map_mul _ _ _
465
- smul_one := fun x => by ext; exact map_one _
459
+ smul f := Units.map f
460
+ one_smul _ := by ext; rfl
461
+ mul_smul _ _ _ := by ext; rfl
462
+ smul_mul _ _ _ := by ext; exact map_mul _ _ _
463
+ smul_one _ := by ext; exact map_one _
466
464
467
465
@[simp]
468
466
theorem smul_units_def (f : A →ₐ[R] A) (x : Aˣ) :
0 commit comments