Skip to content

Commit 9410c2d

Browse files
committed
chore(Topology): remove autoImplicit in some files (#9689)
... where this is easy to do. Co-authored-by: grunweg <grunweg@posteo.de>
1 parent a1387de commit 9410c2d

File tree

9 files changed

+16
-35
lines changed

9 files changed

+16
-35
lines changed

Mathlib/Topology/Bases.lean

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -52,9 +52,6 @@ More fine grained instances for `FirstCountableTopology`,
5252
`TopologicalSpace.SeparableSpace`, and more.
5353
-/
5454

55-
set_option autoImplicit true
56-
57-
5855
open Set Filter Function Topology
5956

6057
noncomputable section
@@ -63,7 +60,7 @@ namespace TopologicalSpace
6360

6461
universe u
6562

66-
variable {α : Type u} [t : TopologicalSpace α] {B : Set (Set α)} {s : Set α}
63+
variable {α : Type u} {β : Type*} [t : TopologicalSpace α] {B : Set (Set α)} {s : Set α}
6764

6865
/-- A topological basis is one that satisfies the necessary conditions so that
6966
it suffices to take unions of the basis sets to get a topology (without taking

Mathlib/Topology/EMetricSpace/Lipschitz.lean

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -41,8 +41,6 @@ coercions both to `ℝ` and `ℝ≥0∞`. Constructors whose names end with `'`
4141
argument, and return `LipschitzWith (Real.toNNReal K) f`.
4242
-/
4343

44-
set_option autoImplicit true
45-
4644
universe u v w x
4745

4846
open Filter Function Set Topology NNReal ENNReal Bornology
@@ -313,8 +311,8 @@ protected theorem continuousOn (hf : LipschitzOnWith K f s) : ContinuousOn f s :
313311
hf.uniformContinuousOn.continuousOn
314312
#align lipschitz_on_with.continuous_on LipschitzOnWith.continuousOn
315313

316-
theorem edist_le_mul_of_le (h : LipschitzOnWith K f s) (hx : x ∈ s) (hy : y ∈ s)
317-
(hr : edist x y ≤ r) :
314+
theorem edist_le_mul_of_le (h : LipschitzOnWith K f s) {x y : α} (hx : x ∈ s) (hy : y ∈ s)
315+
{r : ℝ≥0∞} (hr : edist x y ≤ r) :
318316
edist (f x) (f y) ≤ K * r :=
319317
(h hx hy).trans <| ENNReal.mul_left_mono hr
320318

Mathlib/Topology/FiberBundle/Trivialization.lean

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -48,9 +48,6 @@ Indeed, since trivializations only have meaning on their base sets (taking junk
4848
type of linear trivializations is not even particularly well-behaved.
4949
-/
5050

51-
set_option autoImplicit true
52-
53-
5451
open TopologicalSpace Filter Set Bundle Function
5552

5653
open scoped Topology Classical Bundle
@@ -458,7 +455,7 @@ theorem image_preimage_eq_prod_univ {s : Set B} (hb : s ⊆ e.baseSet) :
458455
⟨e.invFun p, mem_preimage.mpr ((e.proj_symm_apply hp').symm ▸ hp.1), e.apply_symm_apply hp'⟩
459456
#align trivialization.image_preimage_eq_prod_univ Trivialization.image_preimage_eq_prod_univ
460457

461-
theorem tendsto_nhds_iff {l : Filter α} {f : α → Z} {z : Z} (hz : z ∈ e.source) :
458+
theorem tendsto_nhds_iff {α : Type*} {l : Filter α} {f : α → Z} {z : Z} (hz : z ∈ e.source) :
462459
Tendsto f l (𝓝 z) ↔
463460
Tendsto (proj ∘ f) l (𝓝 (proj z)) ∧ Tendsto (fun x ↦ (e (f x)).2) l (𝓝 (e z).2) := by
464461
rw [e.nhds_eq_comap_inf_principal hz, tendsto_inf, tendsto_comap_iff, Prod.tendsto_iff, coe_coe,

Mathlib/Topology/Instances/ENNReal.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1647,7 +1647,7 @@ end truncateToReal
16471647

16481648
section LimsupLiminf
16491649

1650-
set_option autoImplicit true
1650+
variable {ι : Type*}
16511651

16521652
lemma limsup_sub_const (F : Filter ι) [NeBot F] (f : ι → ℝ≥0∞) (c : ℝ≥0∞) :
16531653
Filter.limsup (fun i ↦ f i - c) F = Filter.limsup f F - c :=

Mathlib/Topology/MetricSpace/Gluing.lean

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -48,9 +48,6 @@ isometrically and in a way compatible with `f n`.
4848
4949
-/
5050

51-
set_option autoImplicit true
52-
53-
5451
noncomputable section
5552

5653
universe u v w
@@ -628,6 +625,7 @@ def InductiveLimit (I : ∀ n, Isometry (f n)) : Type _ :=
628625
@UniformSpace.SeparationQuotient _ (inductivePremetric I).toUniformSpace
629626
#align metric.inductive_limit Metric.InductiveLimit
630627

628+
set_option autoImplicit true in
631629
instance : MetricSpace (InductiveLimit (f := f) I) :=
632630
inferInstanceAs <| MetricSpace <|
633631
@UniformSpace.SeparationQuotient _ (inductivePremetric I).toUniformSpace

Mathlib/Topology/MetricSpace/Kuratowski.lean

Lines changed: 7 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -16,9 +16,6 @@ Any partially defined Lipschitz map into `ℓ^∞` can be extended to the whole
1616
1717
-/
1818

19-
set_option autoImplicit true
20-
21-
2219
noncomputable section
2320

2421
set_option linter.uppercaseLean3 false
@@ -140,19 +137,19 @@ Theorem 2.2 of [Assaf Naor, *Metric Embeddings and Lipschitz Extensions*][Naor-2
140137
The same result for the case of a finite type `ι` is implemented in
141138
`LipschitzOnWith.extend_pi`.
142139
-/
143-
theorem LipschitzOnWith.extend_lp_infty [PseudoMetricSpace α] {s : Set α} {f : α → ℓ^∞(ι)}
144-
{K : ℝ≥0} (hfl : LipschitzOnWith K f s): ∃ g : α → ℓ^∞(ι), LipschitzWith K g ∧ EqOn f g s := by
140+
theorem LipschitzOnWith.extend_lp_infty [PseudoMetricSpace α] {s : Set α} {ι : Type*}
141+
{f : α → ℓ^∞(ι)} {K : ℝ≥0} (hfl : LipschitzOnWith K f s) :
142+
∃ g : α → ℓ^∞(ι), LipschitzWith K g ∧ EqOn f g s := by
145143
-- Construct the coordinate-wise extensions
146144
rw [LipschitzOnWith.coordinate] at hfl
147-
have : ∀ i : ι, ∃ g : α → ℝ, LipschitzWith K g ∧ EqOn (fun x => f x i) g s
148-
· intro i
149-
exact LipschitzOnWith.extend_real (hfl i) -- use the nonlinear Hahn-Banach theorem here!
145+
have (i: ι) : ∃ g : α → ℝ, LipschitzWith K g ∧ EqOn (fun x => f x i) g s :=
146+
LipschitzOnWith.extend_real (hfl i) -- use the nonlinear Hahn-Banach theorem here!
150147
choose g hgl hgeq using this
151148
rcases s.eq_empty_or_nonempty with rfl | ⟨a₀, ha₀_in_s⟩
152149
· exact ⟨0, LipschitzWith.const' 0, by simp⟩
153150
· -- Show that the extensions are uniformly bounded
154-
have hf_extb : ∀ a : α, Memℓp (swap g a) ∞
155-
· apply LipschitzWith.uniformly_bounded (swap g) hgl a₀
151+
have hf_extb : ∀ a : α, Memℓp (swap g a) ∞ := by
152+
apply LipschitzWith.uniformly_bounded (swap g) hgl a₀
156153
use ‖f a₀‖
157154
rintro - ⟨i, rfl⟩
158155
simp_rw [← hgeq i ha₀_in_s]

Mathlib/Topology/MetricSpace/Lipschitz.lean

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -32,8 +32,6 @@ coercions both to `ℝ` and `ℝ≥0∞`. Constructors whose names end with `'`
3232
argument, and return `LipschitzWith (Real.toNNReal K) f`.
3333
-/
3434

35-
set_option autoImplicit true
36-
3735
universe u v w x
3836

3937
open Filter Function Set Topology NNReal ENNReal Bornology

Mathlib/Topology/Order/Lattice.lean

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -24,8 +24,6 @@ class `TopologicalLattice` as a topological space and lattice `L` extending `Con
2424
topological, lattice
2525
-/
2626

27-
set_option autoImplicit true
28-
2927
open Filter
3028

3129
open Topology
@@ -79,7 +77,7 @@ instance (priority := 100) LinearOrder.topologicalLattice {L : Type*} [Topologic
7977
continuous_sup := continuous_max
8078
#align linear_order.topological_lattice LinearOrder.topologicalLattice
8179

82-
variable [TopologicalSpace L] [TopologicalSpace X]
80+
variable {L X : Type*} [TopologicalSpace L] [TopologicalSpace X]
8381

8482
@[continuity]
8583
theorem continuous_inf [Inf L] [ContinuousInf L] : Continuous fun p : L × L => p.1 ⊓ p.2 :=
@@ -133,7 +131,7 @@ end SupInf
133131

134132
open Finset
135133

136-
variable {ι : Type*} {s : Finset ι} {f : ι → α → L} {g : ι → L}
134+
variableα : Type*} {s : Finset ι} {f : ι → α → L} {l : Filter α} {g : ι → L}
137135

138136
lemma finset_sup'_nhds [SemilatticeSup L] [ContinuousSup L]
139137
(hne : s.Nonempty) (hs : ∀ i ∈ s, Tendsto (f i) l (𝓝 (g i))) :

Mathlib/Topology/VectorBundle/Basic.lean

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -54,8 +54,6 @@ notes" section of `Mathlib.Topology.FiberBundle.Basic`.
5454
Vector bundle
5555
-/
5656

57-
set_option autoImplicit true
58-
5957
noncomputable section
6058

6159
open Bundle Set Classical
@@ -680,7 +678,7 @@ def localTriv (i : ι) : Trivialization F (π F Z.Fiber) :=
680678

681679
-- porting note: moved from below to fix the next instance
682680
@[simp, mfld_simps]
683-
theorem localTriv_apply (p : Z.TotalSpace) :
681+
theorem localTriv_apply {i : ι} (p : Z.TotalSpace) :
684682
(Z.localTriv i) p = ⟨p.1, Z.coordChange (Z.indexAt p.1) i p.1 p.2⟩ :=
685683
rfl
686684
#align vector_bundle_core.local_triv_apply VectorBundleCore.localTriv_apply

0 commit comments

Comments
 (0)