@@ -175,21 +175,30 @@ lemma isSigmaCompact_iff_sigmaCompactSpace {s : Set X} :
175
175
isSigmaCompact_iff_isSigmaCompact_univ.trans isSigmaCompact_univ_iff
176
176
177
177
-- see Note [lower instance priority]
178
- instance (priority := 200 ) CompactSpace.sigma_compact [CompactSpace X] : SigmaCompactSpace X :=
178
+ instance (priority := 200 ) CompactSpace.sigmaCompact [CompactSpace X] : SigmaCompactSpace X :=
179
179
⟨⟨fun _ => univ, fun _ => isCompact_univ, iUnion_const _⟩⟩
180
180
181
+ -- The `alias` command creates a definition, triggering the defLemma linter.
182
+ @[nolint defLemma, deprecated (since := "2024-11-13")] alias
183
+ CompactSpace.sigma_compact := CompactSpace.sigmaCompact
184
+
181
185
theorem SigmaCompactSpace.of_countable (S : Set (Set X)) (Hc : S.Countable)
182
186
(Hcomp : ∀ s ∈ S, IsCompact s) (HU : ⋃₀ S = univ) : SigmaCompactSpace X :=
183
187
⟨(exists_seq_cover_iff_countable ⟨_, isCompact_empty⟩).2 ⟨S, Hc, Hcomp, HU⟩⟩
184
188
185
189
-- see Note [lower instance priority]
186
- instance (priority := 100 ) sigmaCompactSpace_of_locally_compact_second_countable
190
+ instance (priority := 100 ) sigmaCompactSpace_of_locallyCompact_secondCountable
187
191
[LocallyCompactSpace X] [SecondCountableTopology X] : SigmaCompactSpace X := by
188
192
choose K hKc hxK using fun x : X => exists_compact_mem_nhds x
189
193
rcases countable_cover_nhds hxK with ⟨s, hsc, hsU⟩
190
194
refine SigmaCompactSpace.of_countable _ (hsc.image K) (forall_mem_image.2 fun x _ => hKc x) ?_
191
195
rwa [sUnion_image]
192
196
197
+ -- The `alias` command creates a definition, triggering the defLemma linter.
198
+ @[nolint defLemma, deprecated (since := "2024-11-13")]
199
+ alias sigmaCompactSpace_of_locally_compact_second_countable :=
200
+ sigmaCompactSpace_of_locallyCompact_secondCountable
201
+
193
202
section
194
203
-- Porting note: doesn't work on the same line
195
204
variable (X)
@@ -289,7 +298,7 @@ protected noncomputable def LocallyFinite.encodable {ι : Type*} {f : ι → Set
289
298
/-- In a topological space with sigma compact topology, if `f` is a function that sends each point
290
299
`x` of a closed set `s` to a neighborhood of `x` within `s`, then for some countable set `t ⊆ s`,
291
300
the neighborhoods `f x`, `x ∈ t`, cover the whole set `s`. -/
292
- theorem countable_cover_nhdsWithin_of_sigma_compact {f : X → Set X} {s : Set X} (hs : IsClosed s)
301
+ theorem countable_cover_nhdsWithin_of_sigmaCompact {f : X → Set X} {s : Set X} (hs : IsClosed s)
293
302
(hf : ∀ x ∈ s, f x ∈ 𝓝[s] x) : ∃ t ⊆ s, t.Countable ∧ s ⊆ ⋃ x ∈ t, f x := by
294
303
simp only [nhdsWithin, mem_inf_principal] at hf
295
304
choose t ht hsub using fun n =>
@@ -301,17 +310,22 @@ theorem countable_cover_nhdsWithin_of_sigma_compact {f : X → Set X} {s : Set X
301
310
rcases mem_iUnion₂.1 (hsub n ⟨hn, hx⟩) with ⟨y, hyt : y ∈ t n, hyf : x ∈ s → x ∈ f y⟩
302
311
exact ⟨y, mem_iUnion.2 ⟨n, hyt⟩, hyf hx⟩
303
312
313
+ @[deprecated (since := "2024-11-13")] alias
314
+ countable_cover_nhdsWithin_of_sigma_compact := countable_cover_nhdsWithin_of_sigmaCompact
315
+
304
316
/-- In a topological space with sigma compact topology, if `f` is a function that sends each
305
317
point `x` to a neighborhood of `x`, then for some countable set `s`, the neighborhoods `f x`,
306
318
`x ∈ s`, cover the whole space. -/
307
- theorem countable_cover_nhds_of_sigma_compact {f : X → Set X} (hf : ∀ x, f x ∈ 𝓝 x) :
319
+ theorem countable_cover_nhds_of_sigmaCompact {f : X → Set X} (hf : ∀ x, f x ∈ 𝓝 x) :
308
320
∃ s : Set X, s.Countable ∧ ⋃ x ∈ s, f x = univ := by
309
321
simp only [← nhdsWithin_univ] at hf
310
- rcases countable_cover_nhdsWithin_of_sigma_compact isClosed_univ fun x _ => hf x with
322
+ rcases countable_cover_nhdsWithin_of_sigmaCompact isClosed_univ fun x _ => hf x with
311
323
⟨s, -, hsc, hsU⟩
312
324
exact ⟨s, hsc, univ_subset_iff.1 hsU⟩
313
325
end
314
326
327
+ @[deprecated (since := "2024-11-13")] alias
328
+ countable_cover_nhds_of_sigma_compact := countable_cover_nhds_of_sigmaCompact
315
329
316
330
317
331
/-- An [ exhaustion by compact sets ] (https://en.wikipedia.org/wiki/Exhaustion_by_compact_sets) of a
0 commit comments