@@ -939,6 +939,43 @@ theorem coe_toNNReal_ae_eq {f : α → ℝ≥0∞} (hf : ∀ᵐ x ∂μ, f x <
939
939
simp only [hx.ne, Ne, not_false_iff, coe_toNNReal]
940
940
#align measure_theory.coe_to_nnreal_ae_eq MeasureTheory.coe_toNNReal_ae_eq
941
941
942
+ section count
943
+
944
+ variable [MeasurableSingletonClass α] {f : α → β}
945
+
946
+ /-- A function has finite integral for the counting measure iff its norm is summable. -/
947
+ lemma hasFiniteIntegral_count_iff :
948
+ HasFiniteIntegral f Measure.count ↔ Summable (‖f ·‖) := by
949
+ simp only [HasFiniteIntegral, lintegral_count, lt_top_iff_ne_top,
950
+ ENNReal.tsum_coe_ne_top_iff_summable, ← NNReal.summable_coe, coe_nnnorm]
951
+
952
+ /-- A function is integrable for the counting measure iff its norm is summable. -/
953
+ lemma integrable_count_iff :
954
+ Integrable f Measure.count ↔ Summable (‖f ·‖) := by
955
+ -- Note: this proof would be much easier if we assumed `SecondCountableTopology G`. Without
956
+ -- this we have to justify the claim that `f` lands a.e. in a separable subset, which is true
957
+ -- (because summable functions have countable range) but slightly tedious to check.
958
+ rw [Integrable, hasFiniteIntegral_count_iff, and_iff_right_iff_imp]
959
+ intro hs
960
+ have hs' : (Function.support f).Countable := by
961
+ simpa only [Ne, Pi.zero_apply, eq_comm, Function.support, norm_eq_zero]
962
+ using hs.countable_support
963
+ letI : MeasurableSpace β := borel β
964
+ haveI : BorelSpace β := ⟨rfl⟩
965
+ refine aestronglyMeasurable_iff_aemeasurable_separable.mpr ⟨?_, ?_⟩
966
+ · refine (measurable_zero.measurable_of_countable_ne ?_).aemeasurable
967
+ simpa only [Ne, Pi.zero_apply, eq_comm, Function.support] using hs'
968
+ · refine ⟨f '' univ, ?_, ae_of_all _ fun a ↦ ⟨a, ⟨mem_univ _, rfl⟩⟩⟩
969
+ suffices f '' univ ⊆ (f '' f.support) ∪ {0 } from
970
+ (((hs'.image f).union (countable_singleton 0 )).mono this).isSeparable
971
+ intro g hg
972
+ rcases eq_or_ne g 0 with rfl | hg'
973
+ · exact Or.inr (mem_singleton _)
974
+ · obtain ⟨x, -, rfl⟩ := (mem_image ..).mp hg
975
+ exact Or.inl ⟨x, hg', rfl⟩
976
+
977
+ end count
978
+
942
979
section
943
980
944
981
variable {E : Type *} [NormedAddCommGroup E] [NormedSpace ℝ E]
0 commit comments