@@ -72,8 +72,8 @@ def coneOfPreserves [PreservesLimit (F ⋙ snd L R) R] (c₁ : Cone (F ⋙ fst L
72
72
w := ((isLimitOfPreserves R t₂).fac (limitAuxiliaryCone F c₁) j).symm }
73
73
naturality := fun j₁ j₂ t => by
74
74
ext
75
- . simp [← c₁.w t]
76
- . simp [← c₂.w t] }
75
+ · simp [← c₁.w t]
76
+ · simp [← c₂.w t] }
77
77
#align category_theory.comma.cone_of_preserves CategoryTheory.Comma.coneOfPreserves
78
78
79
79
/-- Provided that `R` preserves the appropriate limit, then the cone in `coneOfPreserves` is a
@@ -92,8 +92,8 @@ def coneOfPreservesIsLimit [PreservesLimit (F ⋙ snd L R) R] {c₁ : Cone (F
92
92
exact (s.π.app j).w }
93
93
uniq s m w := by
94
94
apply CommaMorphism.ext
95
- . exact t₁.uniq ((fst L R).mapCone s) _ (fun j => by simp [← w])
96
- . exact t₂.uniq ((snd L R).mapCone s) _ (fun j => by simp [← w])
95
+ · exact t₁.uniq ((fst L R).mapCone s) _ (fun j => by simp [← w])
96
+ · exact t₂.uniq ((snd L R).mapCone s) _ (fun j => by simp [← w])
97
97
#align category_theory.comma.cone_of_preserves_is_limit CategoryTheory.Comma.coneOfPreservesIsLimit
98
98
99
99
/-- (Implementation). An auxiliary cocone which is useful in order to construct colimits
@@ -123,8 +123,8 @@ def coconeOfPreserves [PreservesColimit (F ⋙ fst L R) L] {c₁ : Cocone (F ⋙
123
123
w := (isColimitOfPreserves L t₁).fac (colimitAuxiliaryCocone _ c₂) j }
124
124
naturality := fun j₁ j₂ t => by
125
125
ext
126
- . simp [← c₁.w t]
127
- . simp [← c₂.w t] }
126
+ · simp [← c₁.w t]
127
+ · simp [← c₂.w t] }
128
128
#align category_theory.comma.cocone_of_preserves CategoryTheory.Comma.coconeOfPreserves
129
129
130
130
/-- Provided that `L` preserves the appropriate colimit, then the cocone in `coconeOfPreserves` is
@@ -143,8 +143,8 @@ def coconeOfPreservesIsColimit [PreservesColimit (F ⋙ fst L R) L] {c₁ : Coco
143
143
exact (s.ι.app j).w }
144
144
uniq s m w := by
145
145
apply CommaMorphism.ext
146
- . exact t₁.uniq ((fst L R).mapCocone s) _ (fun j => by simp [← w])
147
- . exact t₂.uniq ((snd L R).mapCocone s) _ (fun j => by simp [← w])
146
+ · exact t₁.uniq ((fst L R).mapCocone s) _ (fun j => by simp [← w])
147
+ · exact t₂.uniq ((snd L R).mapCocone s) _ (fun j => by simp [← w])
148
148
#align category_theory.comma.cocone_of_preserves_is_colimit CategoryTheory.Comma.coconeOfPreservesIsColimit
149
149
150
150
instance hasLimit (F : J ⥤ Comma L R) [HasLimit (F ⋙ fst L R)] [HasLimit (F ⋙ snd L R)]
@@ -231,8 +231,8 @@ noncomputable instance createsLimit [i : PreservesLimit (F ⋙ proj X G) G] :
231
231
CreatesLimit F (proj X G) :=
232
232
letI : PreservesLimit (F ⋙ Comma.snd (Functor.fromPUnit X) G) G := i
233
233
createsLimitOfReflectsIso fun _ t =>
234
- { liftedCone := Comma.coneOfPreserves F pUnitCone t
235
- makesLimit := Comma.coneOfPreservesIsLimit _ pUnitConeIsLimit _
234
+ { liftedCone := Comma.coneOfPreserves F punitCone t
235
+ makesLimit := Comma.coneOfPreservesIsLimit _ punitConeIsLimit _
236
236
validLift := Cones.ext (Iso.refl _) fun _ => (id_comp _).symm }
237
237
#align category_theory.structured_arrow.creates_limit CategoryTheory.StructuredArrow.createsLimit
238
238
@@ -278,8 +278,8 @@ noncomputable instance createsColimit [i : PreservesColimit (F ⋙ proj G X) G]
278
278
CreatesColimit F (proj G X) :=
279
279
letI : PreservesColimit (F ⋙ Comma.fst G (Functor.fromPUnit X)) G := i
280
280
createsColimitOfReflectsIso fun _ t =>
281
- { liftedCocone := Comma.coconeOfPreserves F t pUnitCocone
282
- makesColimit := Comma.coconeOfPreservesIsColimit _ _ pUnitCoconeIsColimit
281
+ { liftedCocone := Comma.coconeOfPreserves F t punitCocone
282
+ makesColimit := Comma.coconeOfPreservesIsColimit _ _ punitCoconeIsColimit
283
283
validLift := Cocones.ext (Iso.refl _) fun _ => comp_id _ }
284
284
#align category_theory.costructured_arrow.creates_colimit CategoryTheory.CostructuredArrow.createsColimit
285
285
0 commit comments