|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Anatole Dedecker. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Anatole Dedecker |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module analysis.locally_convex.strong_topology |
| 7 | +! leanprover-community/mathlib commit 47b12e7f2502f14001f891ca87fbae2b4acaed3f |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Topology.Algebra.Module.StrongTopology |
| 12 | +import Mathlib.Topology.Algebra.Module.LocallyConvex |
| 13 | + |
| 14 | +/-! |
| 15 | +# Local convexity of the strong topology |
| 16 | +
|
| 17 | +In this file we prove that the strong topology on `E βL[β] F` is locally convex provided that `F` is |
| 18 | +locally convex. |
| 19 | +
|
| 20 | +## References |
| 21 | +
|
| 22 | +* [N. Bourbaki, *Topological Vector Spaces*][bourbaki1987] |
| 23 | +
|
| 24 | +## Todo |
| 25 | +
|
| 26 | +* Characterization in terms of seminorms |
| 27 | +
|
| 28 | +## Tags |
| 29 | +
|
| 30 | +locally convex, bounded convergence |
| 31 | +-/ |
| 32 | + |
| 33 | + |
| 34 | +open Topology UniformConvergence |
| 35 | + |
| 36 | +variable {R πβ πβ E F : Type _} |
| 37 | + |
| 38 | +namespace ContinuousLinearMap |
| 39 | + |
| 40 | +variable [AddCommGroup E] [TopologicalSpace E] [AddCommGroup F] [TopologicalSpace F] |
| 41 | + [TopologicalAddGroup F] |
| 42 | + |
| 43 | +section General |
| 44 | + |
| 45 | +variable (R) |
| 46 | + |
| 47 | +variable [OrderedSemiring R] |
| 48 | + |
| 49 | +variable [NormedField πβ] [NormedField πβ] [Module πβ E] [Module πβ F] {Ο : πβ β+* πβ} |
| 50 | + |
| 51 | +variable [Module R F] [ContinuousConstSMul R F] [LocallyConvexSpace R F] [SMulCommClass πβ R F] |
| 52 | + |
| 53 | +theorem strongTopology.locallyConvexSpace (π : Set (Set E)) (hπβ : π.Nonempty) |
| 54 | + (hπβ : DirectedOn (Β· β Β·) π) : |
| 55 | + @LocallyConvexSpace R (E βSL[Ο] F) _ _ _ (strongTopology Ο F π) := by |
| 56 | + letI : TopologicalSpace (E βSL[Ο] F) := strongTopology Ο F π |
| 57 | + haveI : TopologicalAddGroup (E βSL[Ο] F) := strongTopology.topologicalAddGroup _ _ _ |
| 58 | + apply LocallyConvexSpace.ofBasisZero _ _ _ _ |
| 59 | + (strongTopology.hasBasis_nhds_zero_of_basis _ _ _ hπβ hπβ |
| 60 | + (LocallyConvexSpace.convex_basis_zero R F)) _ |
| 61 | + rintro β¨S, Vβ© β¨_, _, hVconvexβ© f hf g hg a b ha hb hab x hx |
| 62 | + exact hVconvex (hf x hx) (hg x hx) ha hb hab |
| 63 | +#align continuous_linear_map.strong_topology.locally_convex_space ContinuousLinearMap.strongTopology.locallyConvexSpace |
| 64 | + |
| 65 | +end General |
| 66 | + |
| 67 | +section BoundedSets |
| 68 | + |
| 69 | +variable [OrderedSemiring R] |
| 70 | + |
| 71 | +variable [NormedField πβ] [NormedField πβ] [Module πβ E] [Module πβ F] {Ο : πβ β+* πβ} |
| 72 | + |
| 73 | +variable [Module R F] [ContinuousConstSMul R F] [LocallyConvexSpace R F] [SMulCommClass πβ R F] |
| 74 | + |
| 75 | +instance : LocallyConvexSpace R (E βSL[Ο] F) := |
| 76 | + strongTopology.locallyConvexSpace R _ β¨β
, Bornology.isVonNBounded_empty πβ Eβ© |
| 77 | + (directedOn_of_sup_mem fun _ _ => Bornology.IsVonNBounded.union) |
| 78 | + |
| 79 | +end BoundedSets |
| 80 | + |
| 81 | +end ContinuousLinearMap |
0 commit comments