Skip to content

Commit 9994bf5

Browse files
committed
feat: the homotopy lifting property for covering maps (#22649)
Co-authored-by: Junyan Xu <junyanxumath@gmail.com>
1 parent 67019e0 commit 9994bf5

File tree

4 files changed

+372
-24
lines changed

4 files changed

+372
-24
lines changed

Mathlib.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5819,6 +5819,7 @@ import Mathlib.Topology.Homotopy.Contractible
58195819
import Mathlib.Topology.Homotopy.Equiv
58205820
import Mathlib.Topology.Homotopy.HSpaces
58215821
import Mathlib.Topology.Homotopy.HomotopyGroup
5822+
import Mathlib.Topology.Homotopy.Lifting
58225823
import Mathlib.Topology.Homotopy.Path
58235824
import Mathlib.Topology.Homotopy.Product
58245825
import Mathlib.Topology.IndicatorConstPointwise

Mathlib/AlgebraicTopology/FundamentalGroupoid/Basic.lean

Lines changed: 2 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -199,32 +199,10 @@ theorem trans_assoc_reparam {x₀ x₁ x₂ x₃ : X} (p : Path x₀ x₁) (q :
199199
-- TODO: why does split_ifs not reduce the ifs??????
200200
split_ifs with h₁ h₂ h₃ h₄ h₅
201201
· rfl
202-
· exfalso
203-
linarith
204-
· exfalso
205-
linarith
206-
· exfalso
207-
linarith
208-
· exfalso
209-
linarith
210-
· exfalso
211-
linarith
212-
· exfalso
213-
linarith
202+
iterate 6 exfalso; linarith
214203
· have h : 2 * (2 * (x : ℝ)) - 1 = 2 * (2 * (↑x + 1 / 4) - 1) := by linarith
215204
simp [h₂, h₁, h, dif_neg (show ¬False from id), dif_pos True.intro, if_false, if_true]
216-
· exfalso
217-
linarith
218-
· exfalso
219-
linarith
220-
· exfalso
221-
linarith
222-
· exfalso
223-
linarith
224-
· exfalso
225-
linarith
226-
· exfalso
227-
linarith
205+
iterate 6 exfalso; linarith
228206
· congr
229207
ring
230208

Mathlib/Topology/Homotopy/Basic.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -639,6 +639,9 @@ theorem trans ⦃f g h : C(X, Y)⦄ (h₀ : HomotopicRel f g S) (h₁ : Homotopi
639639
theorem equivalence : Equivalence fun f g : C(X, Y) => HomotopicRel f g S :=
640640
⟨refl, by apply symm, by apply trans⟩
641641

642+
theorem comp_continuousMap ⦃f₀ f₁ : C(X, Y)⦄ (h : f₀.HomotopicRel f₁ S) (g : C(Y, Z)) :
643+
(g.comp f₀).HomotopicRel (g.comp f₁) S := h.map (·.compContinuousMap g)
644+
642645
end HomotopicRel
643646

644647
@[simp] theorem homotopicRel_empty {f₀ f₁ : C(X, Y)} : HomotopicRel f₀ f₁ ∅ ↔ Homotopic f₀ f₁ :=

0 commit comments

Comments
 (0)