Skip to content

Commit 9a88da8

Browse files
chore: fix names in DiscreteQuotient (#3481)
1 parent ed47d42 commit 9a88da8

File tree

1 file changed

+56
-56
lines changed

1 file changed

+56
-56
lines changed

Mathlib/Topology/DiscreteQuotient.lean

Lines changed: 56 additions & 56 deletions
Original file line numberDiff line numberDiff line change
@@ -35,17 +35,17 @@ quotients as setoids whose equivalence classes are clopen.
3535
The type `DiscreteQuotient X` is endowed with an instance of a `SemilatticeInf` with `OrderTop`.
3636
The partial ordering `A ≤ B` mathematically means that `B.proj` factors through `A.proj`.
3737
The top element `⊤` is the trivial quotient, meaning that every element of `X` is collapsed
38-
to a point. Given `h : A ≤ B`, the map `A → B` is `DiscreteQuotient.ofLe h`.
38+
to a point. Given `h : A ≤ B`, the map `A → B` is `DiscreteQuotient.ofLE h`.
3939
4040
Whenever `X` is a locally connected space, the type `DiscreteQuotient X` is also endowed with an
4141
instance of a `OrderBot`, where the bot element `⊥` is given by the `connectedComponentSetoid`,
4242
i.e., `x ~ y` means that `x` and `y` belong to the same connected component. In particular, if `X`
4343
is a discrete topological space, then `x ~ y` is equivalent (propositionally, not definitionally) to
4444
`x = y`.
4545
46-
Given `f : C(X, Y)`, we define a predicate `DiscreteQuotient.LeComap f A B` for `A :
46+
Given `f : C(X, Y)`, we define a predicate `DiscreteQuotient.LEComap f A B` for `A :
4747
DiscreteQuotient X` and `B : DiscreteQuotient Y`, asserting that `f` descends to `A → B`. If
48-
`cond : DiscreteQuotient.LeComap h A B`, the function `A → B` is obtained by
48+
`cond : DiscreteQuotient.LEComap h A B`, the function `A → B` is obtained by
4949
`DiscreteQuotient.map f cond`.
5050
5151
## Theorems
@@ -58,7 +58,7 @@ The two main results proved in this file are:
5858
5959
2. `DiscreteQuotient.exists_of_compat` which states that when `X` is compact, then any
6060
system of elements of `Q` as `Q : DiscreteQuotient X` varies, which is compatible with
61-
respect to `DiscreteQuotient.ofLe`, must arise from some element of `X`.
61+
respect to `DiscreteQuotient.ofLE`, must arise from some element of `X`.
6262
6363
## Remarks
6464
The constructions in this file will be used to show that any profinite space is a limit
@@ -208,44 +208,44 @@ section OfLe
208208
variable {A B C : DiscreteQuotient X}
209209

210210
/-- The map induced by a refinement of a discrete quotient. -/
211-
def ofLe (h : A ≤ B) : A → B :=
211+
def ofLE (h : A ≤ B) : A → B :=
212212
Quotient.map' (fun x => x) h
213-
#align discrete_quotient.of_le DiscreteQuotient.ofLe
213+
#align discrete_quotient.of_le DiscreteQuotient.ofLE
214214

215215
@[simp]
216-
theorem ofLe_refl : ofLe (le_refl A) = id := by
216+
theorem ofLE_refl : ofLE (le_refl A) = id := by
217217
ext ⟨⟩
218218
rfl
219-
#align discrete_quotient.of_le_refl DiscreteQuotient.ofLe_refl
219+
#align discrete_quotient.of_le_refl DiscreteQuotient.ofLE_refl
220220

221-
theorem ofLe_refl_apply (a : A) : ofLe (le_refl A) a = a := by simp
222-
#align discrete_quotient.of_le_refl_apply DiscreteQuotient.ofLe_refl_apply
221+
theorem ofLE_refl_apply (a : A) : ofLE (le_refl A) a = a := by simp
222+
#align discrete_quotient.of_le_refl_apply DiscreteQuotient.ofLE_refl_apply
223223

224224
@[simp]
225-
theorem ofLe_ofLe (h₁ : A ≤ B) (h₂ : B ≤ C) (x : A) : ofLe h₂ (ofLe h₁ x) = ofLe (h₁.trans h₂) x :=
225+
theorem ofLE_ofLE (h₁ : A ≤ B) (h₂ : B ≤ C) (x : A) : ofLE h₂ (ofLE h₁ x) = ofLE (h₁.trans h₂) x :=
226226
by
227227
rcases x with ⟨⟩
228228
rfl
229-
#align discrete_quotient.of_le_of_le DiscreteQuotient.ofLe_ofLe
229+
#align discrete_quotient.of_le_of_le DiscreteQuotient.ofLE_ofLE
230230

231231
@[simp]
232-
theorem ofLe_comp_ofLe (h₁ : A ≤ B) (h₂ : B ≤ C) : ofLe h₂ ∘ ofLe h₁ = ofLe (le_trans h₁ h₂) :=
233-
funext <| ofLe_ofLe _ _
234-
#align discrete_quotient.of_le_comp_of_le DiscreteQuotient.ofLe_comp_ofLe
232+
theorem ofLE_comp_ofLE (h₁ : A ≤ B) (h₂ : B ≤ C) : ofLE h₂ ∘ ofLE h₁ = ofLE (le_trans h₁ h₂) :=
233+
funext <| ofLE_ofLE _ _
234+
#align discrete_quotient.of_le_comp_of_le DiscreteQuotient.ofLE_comp_ofLE
235235

236-
theorem ofLe_continuous (h : A ≤ B) : Continuous (ofLe h) :=
236+
theorem ofLE_continuous (h : A ≤ B) : Continuous (ofLE h) :=
237237
continuous_of_discreteTopology
238-
#align discrete_quotient.of_le_continuous DiscreteQuotient.ofLe_continuous
238+
#align discrete_quotient.of_le_continuous DiscreteQuotient.ofLE_continuous
239239

240240
@[simp]
241-
theorem ofLe_proj (h : A ≤ B) (x : X) : ofLe h (A.proj x) = B.proj x :=
241+
theorem ofLE_proj (h : A ≤ B) (x : X) : ofLE h (A.proj x) = B.proj x :=
242242
Quotient.sound' (B.refl _)
243-
#align discrete_quotient.of_le_proj DiscreteQuotient.ofLe_proj
243+
#align discrete_quotient.of_le_proj DiscreteQuotient.ofLE_proj
244244

245245
@[simp]
246-
theorem ofLe_comp_proj (h : A ≤ B) : ofLe h ∘ A.proj = B.proj :=
247-
funext <| ofLe_proj _
248-
#align discrete_quotient.of_le_comp_proj DiscreteQuotient.ofLe_comp_proj
246+
theorem ofLE_comp_proj (h : A ≤ B) : ofLE h ∘ A.proj = B.proj :=
247+
funext <| ofLE_proj _
248+
#align discrete_quotient.of_le_comp_proj DiscreteQuotient.ofLE_comp_proj
249249

250250
end OfLe
251251

@@ -283,45 +283,45 @@ section Map
283283

284284
variable (f : C(X, Y)) (A A' : DiscreteQuotient X) (B B' : DiscreteQuotient Y)
285285

286-
/-- Given `f : C(X, Y)`, `DiscreteQuotient.LeComap f A B` is defined as
286+
/-- Given `f : C(X, Y)`, `DiscreteQuotient.LEComap f A B` is defined as
287287
`A ≤ B.comap f`. Mathematically this means that `f` descends to a morphism `A → B`. -/
288-
def LeComap : Prop :=
288+
def LEComap : Prop :=
289289
A ≤ B.comap f
290-
#align discrete_quotient.le_comap DiscreteQuotient.LeComap
290+
#align discrete_quotient.le_comap DiscreteQuotient.LEComap
291291

292-
theorem leComap_id : LeComap (.id X) A A := le_rfl
292+
theorem leComap_id : LEComap (.id X) A A := le_rfl
293293
#align discrete_quotient.le_comap_id DiscreteQuotient.leComap_id
294294

295295
variable {A A' B B'} {f} {g : C(Y, Z)} {C : DiscreteQuotient Z}
296296

297297
@[simp]
298-
theorem leComap_id_iff : LeComap (ContinuousMap.id X) A A' ↔ A ≤ A' :=
298+
theorem leComap_id_iff : LEComap (ContinuousMap.id X) A A' ↔ A ≤ A' :=
299299
Iff.rfl
300300
#align discrete_quotient.le_comap_id_iff DiscreteQuotient.leComap_id_iff
301301

302-
theorem LeComap.comp : LeComap g B C → LeComap f A B → LeComap (g.comp f) A C := by tauto
303-
#align discrete_quotient.le_comap.comp DiscreteQuotient.LeComap.comp
302+
theorem LEComap.comp : LEComap g B C → LEComap f A B → LEComap (g.comp f) A C := by tauto
303+
#align discrete_quotient.le_comap.comp DiscreteQuotient.LEComap.comp
304304

305305
@[mono]
306-
theorem LeComap.mono (h : LeComap f A B) (hA : A' ≤ A) (hB : B ≤ B') : LeComap f A' B' :=
306+
theorem LEComap.mono (h : LEComap f A B) (hA : A' ≤ A) (hB : B ≤ B') : LEComap f A' B' :=
307307
hA.trans <| h.trans <| comap_mono _ hB
308-
#align discrete_quotient.le_comap.mono DiscreteQuotient.LeComap.mono
308+
#align discrete_quotient.le_comap.mono DiscreteQuotient.LEComap.mono
309309

310310
/-- Map a discrete quotient along a continuous map. -/
311-
def map (f : C(X, Y)) (cond : LeComap f A B) : A → B := Quotient.map' f cond
311+
def map (f : C(X, Y)) (cond : LEComap f A B) : A → B := Quotient.map' f cond
312312
#align discrete_quotient.map DiscreteQuotient.map
313313

314-
theorem map_continuous (cond : LeComap f A B) : Continuous (map f cond) :=
314+
theorem map_continuous (cond : LEComap f A B) : Continuous (map f cond) :=
315315
continuous_of_discreteTopology
316316
#align discrete_quotient.map_continuous DiscreteQuotient.map_continuous
317317

318318
@[simp]
319-
theorem map_comp_proj (cond : LeComap f A B) : map f cond ∘ A.proj = B.proj ∘ f :=
319+
theorem map_comp_proj (cond : LEComap f A B) : map f cond ∘ A.proj = B.proj ∘ f :=
320320
rfl
321321
#align discrete_quotient.map_comp_proj DiscreteQuotient.map_comp_proj
322322

323323
@[simp]
324-
theorem map_proj (cond : LeComap f A B) (x : X) : map f cond (A.proj x) = B.proj (f x) :=
324+
theorem map_proj (cond : LEComap f A B) (x : X) : map f cond (A.proj x) = B.proj (f x) :=
325325
rfl
326326
#align discrete_quotient.map_proj DiscreteQuotient.map_proj
327327

@@ -330,37 +330,37 @@ theorem map_id : map _ (leComap_id A) = id := by ext ⟨⟩; rfl
330330
#align discrete_quotient.map_id DiscreteQuotient.map_id
331331

332332
-- porting note: todo: figure out why `simpNF` says this is a bad `@[simp]` lemma
333-
theorem map_comp (h1 : LeComap g B C) (h2 : LeComap f A B) :
333+
theorem map_comp (h1 : LEComap g B C) (h2 : LEComap f A B) :
334334
map (g.comp f) (h1.comp h2) = map g h1 ∘ map f h2 := by
335335
ext ⟨⟩
336336
rfl
337337
#align discrete_quotient.map_comp DiscreteQuotient.map_comp
338338

339339
@[simp]
340-
theorem ofLe_map (cond : LeComap f A B) (h : B ≤ B') (a : A) :
341-
ofLe h (map f cond a) = map f (cond.mono le_rfl h) a := by
340+
theorem ofLE_map (cond : LEComap f A B) (h : B ≤ B') (a : A) :
341+
ofLE h (map f cond a) = map f (cond.mono le_rfl h) a := by
342342
rcases a with ⟨⟩
343343
rfl
344-
#align discrete_quotient.of_le_map DiscreteQuotient.ofLe_map
344+
#align discrete_quotient.of_le_map DiscreteQuotient.ofLE_map
345345

346346
@[simp]
347-
theorem ofLe_comp_map (cond : LeComap f A B) (h : B ≤ B') :
348-
ofLe h ∘ map f cond = map f (cond.mono le_rfl h) :=
349-
funext <| ofLe_map cond h
350-
#align discrete_quotient.of_le_comp_map DiscreteQuotient.ofLe_comp_map
347+
theorem ofLE_comp_map (cond : LEComap f A B) (h : B ≤ B') :
348+
ofLE h ∘ map f cond = map f (cond.mono le_rfl h) :=
349+
funext <| ofLE_map cond h
350+
#align discrete_quotient.of_le_comp_map DiscreteQuotient.ofLE_comp_map
351351

352352
@[simp]
353-
theorem map_ofLe (cond : LeComap f A B) (h : A' ≤ A) (c : A') :
354-
map f cond (ofLe h c) = map f (cond.mono h le_rfl) c := by
353+
theorem map_ofLE (cond : LEComap f A B) (h : A' ≤ A) (c : A') :
354+
map f cond (ofLE h c) = map f (cond.mono h le_rfl) c := by
355355
rcases c with ⟨⟩
356356
rfl
357-
#align discrete_quotient.map_of_le DiscreteQuotient.map_ofLe
357+
#align discrete_quotient.map_of_le DiscreteQuotient.map_ofLE
358358

359359
@[simp]
360-
theorem map_comp_ofLe (cond : LeComap f A B) (h : A' ≤ A) :
361-
map f cond ∘ ofLe h = map f (cond.mono h le_rfl) :=
362-
funext <| map_ofLe cond h
363-
#align discrete_quotient.map_comp_of_le DiscreteQuotient.map_comp_ofLe
360+
theorem map_comp_ofLE (cond : LEComap f A B) (h : A' ≤ A) :
361+
map f cond ∘ ofLE h = map f (cond.mono h le_rfl) :=
362+
funext <| map_ofLE cond h
363+
#align discrete_quotient.map_comp_of_le DiscreteQuotient.map_comp_ofLE
364364

365365
end Map
366366

@@ -372,19 +372,19 @@ theorem eq_of_forall_proj_eq [T2Space X] [CompactSpace X] [disc : TotallyDisconn
372372
exact (Quotient.exact' (h (ofClopen hU1))).mpr hU2
373373
#align discrete_quotient.eq_of_forall_proj_eq DiscreteQuotient.eq_of_forall_proj_eq
374374

375-
theorem fiber_subset_ofLe {A B : DiscreteQuotient X} (h : A ≤ B) (a : A) :
376-
A.proj ⁻¹' {a} ⊆ B.proj ⁻¹' {ofLe h a} := by
375+
theorem fiber_subset_ofLE {A B : DiscreteQuotient X} (h : A ≤ B) (a : A) :
376+
A.proj ⁻¹' {a} ⊆ B.proj ⁻¹' {ofLE h a} := by
377377
rcases A.proj_surjective a with ⟨a, rfl⟩
378-
rw [fiber_eq, ofLe_proj, fiber_eq]
378+
rw [fiber_eq, ofLE_proj, fiber_eq]
379379
exact fun _ h' => h h'
380-
#align discrete_quotient.fiber_subset_of_le DiscreteQuotient.fiber_subset_ofLe
380+
#align discrete_quotient.fiber_subset_of_le DiscreteQuotient.fiber_subset_ofLE
381381

382382
theorem exists_of_compat [CompactSpace X] (Qs : (Q : DiscreteQuotient X) → Q)
383-
(compat : ∀ (A B : DiscreteQuotient X) (h : A ≤ B), ofLe h (Qs _) = Qs _) :
383+
(compat : ∀ (A B : DiscreteQuotient X) (h : A ≤ B), ofLE h (Qs _) = Qs _) :
384384
∃ x : X, ∀ Q : DiscreteQuotient X, Q.proj x = Qs _ := by
385385
have H₁ : ∀ Q₁ Q₂, Q₁ ≤ Q₂ → proj Q₁ ⁻¹' {Qs Q₁} ⊆ proj Q₂ ⁻¹' {Qs Q₂} := fun _ _ h => by
386386
rw [← compat _ _ h]
387-
exact fiber_subset_ofLe _ _
387+
exact fiber_subset_ofLE _ _
388388
obtain ⟨x, hx⟩ : Set.Nonempty (⋂ Q, proj Q ⁻¹' {Qs Q}) :=
389389
IsCompact.nonempty_interᵢ_of_directed_nonempty_compact_closed
390390
(fun Q : DiscreteQuotient X => Q.proj ⁻¹' {Qs _}) (directed_of_inf H₁)

0 commit comments

Comments
 (0)