@@ -283,14 +283,14 @@ theorem equivLike_inv_eq_symm (f : M ≃* N) : EquivLike.inv f = f.symm := rfl
283
283
def Simps.apply (e : M ≃* N) : M → N := e
284
284
/-- See Note [custom simps projection] -/
285
285
@[to_additive "See Note custom simps projection"]
286
- def Simps.symmApply (e : M ≃* N) : N → M :=
286
+ def Simps.symm_apply (e : M ≃* N) : N → M :=
287
287
e.symm
288
- #align mul_equiv.simps.symm_apply MulEquiv.Simps.symmApply
289
- #align add_equiv.simps.symm_apply AddEquiv.Simps.symmApply
288
+ #align mul_equiv.simps.symm_apply MulEquiv.Simps.symm_apply
289
+ #align add_equiv.simps.symm_apply AddEquiv.Simps.symm_apply
290
290
291
- initialize_simps_projections AddEquiv (toFun → apply, invFun → symmApply )
291
+ initialize_simps_projections AddEquiv (toFun → apply, invFun → symm_apply )
292
292
293
- initialize_simps_projections MulEquiv (toFun → apply, invFun → symmApply )
293
+ initialize_simps_projections MulEquiv (toFun → apply, invFun → symm_apply )
294
294
295
295
@[to_additive (attr := simp)]
296
296
theorem toEquiv_symm (f : M ≃* N) : f.symm.toEquiv = f.toEquiv.symm := rfl
@@ -686,8 +686,8 @@ def piSubsingleton {ι : Type _} (M : ι → Type _) [∀ j, Mul (M j)] [Subsing
686
686
#align add_equiv.Pi_subsingleton AddEquiv.piSubsingleton
687
687
#align mul_equiv.Pi_subsingleton_apply MulEquiv.piSubsingleton_apply
688
688
#align add_equiv.Pi_subsingleton_apply AddEquiv.piSubsingleton_apply
689
- #align mul_equiv.Pi_subsingleton_symm_apply MulEquiv.piSubsingleton_symmApply
690
- #align add_equiv.Pi_subsingleton_symm_apply AddEquiv.piSubsingleton_symmApply
689
+ #align mul_equiv.Pi_subsingleton_symm_apply MulEquiv.piSubsingleton_symm_apply
690
+ #align add_equiv.Pi_subsingleton_symm_apply AddEquiv.piSubsingleton_symm_apply
691
691
692
692
/-!
693
693
# Groups
@@ -745,12 +745,12 @@ theorem MulHom.toMulEquiv_apply [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ*
745
745
#align add_hom.to_add_equiv_apply AddHom.toAddEquiv_apply
746
746
747
747
@[to_additive (attr := simp)]
748
- theorem MulHom.toMulEquiv_symmApply [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ* M)
748
+ theorem MulHom.toMulEquiv_symm_apply [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ* M)
749
749
(h₁ : g.comp f = MulHom.id _) (h₂ : f.comp g = MulHom.id _) :
750
750
(MulEquiv.symm (MulHom.toMulEquiv f g h₁ h₂) : N → M) = ↑g :=
751
751
rfl
752
- #align mul_hom.to_mul_equiv_symm_apply MulHom.toMulEquiv_symmApply
753
- #align add_hom.to_add_equiv_symm_apply AddHom.toAddEquiv_symmApply
752
+ #align mul_hom.to_mul_equiv_symm_apply MulHom.toMulEquiv_symm_apply
753
+ #align add_hom.to_add_equiv_symm_apply AddHom.toAddEquiv_symm_apply
754
754
755
755
/-- Given a pair of monoid homomorphisms `f`, `g` such that `g.comp f = id` and `f.comp g = id`,
756
756
returns an multiplicative equivalence with `toFun = f` and `invFun = g`. This constructor is
@@ -771,8 +771,8 @@ def MonoidHom.toMulEquiv [MulOneClass M] [MulOneClass N] (f : M →* N) (g : N
771
771
#align add_monoid_hom.to_add_equiv AddMonoidHom.toAddEquiv
772
772
#align monoid_hom.to_mul_equiv_apply MonoidHom.toMulEquiv_apply
773
773
#align add_monoid_hom.to_add_equiv_apply AddMonoidHom.toAddEquiv_apply
774
- #align monoid_hom.to_mul_equiv_symm_apply MonoidHom.toMulEquiv_symmApply
775
- #align add_monoid_hom.to_add_equiv_symm_apply AddMonoidHom.toAddEquiv_symmApply
774
+ #align monoid_hom.to_mul_equiv_symm_apply MonoidHom.toMulEquiv_symm_apply
775
+ #align add_monoid_hom.to_add_equiv_symm_apply AddMonoidHom.toAddEquiv_symm_apply
776
776
777
777
namespace Equiv
778
778
0 commit comments