Skip to content

Commit 9aade17

Browse files
committed
fix: replace symmApply by symm_apply (#2560)
1 parent 26b92df commit 9aade17

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

43 files changed

+131
-131
lines changed

Mathlib/Algebra/Algebra/Equiv.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -311,11 +311,11 @@ def symm (e : A₁ ≃ₐ[R] A₂) : A₂ ≃ₐ[R] A₁ :=
311311
#align alg_equiv.symm AlgEquiv.symm
312312

313313
/-- See Note [custom simps projection] -/
314-
def Simps.symmApply (e : A₁ ≃ₐ[R] A₂) : A₂ → A₁ :=
314+
def Simps.symm_apply (e : A₁ ≃ₐ[R] A₂) : A₂ → A₁ :=
315315
e.symm
316-
#align alg_equiv.simps.symm_apply AlgEquiv.Simps.symmApply
316+
#align alg_equiv.simps.symm_apply AlgEquiv.Simps.symm_apply
317317

318-
initialize_simps_projections AlgEquiv (toEquiv_toFun → apply,toEquiv_invFun → symmApply)
318+
initialize_simps_projections AlgEquiv (toEquiv_toFun → apply,toEquiv_invFun → symm_apply)
319319

320320
--@[simp] -- Porting note: simp can prove this once symm_mk is introduced
321321
theorem coe_apply_coe_coe_symm_apply {F : Type _} [AlgEquivClass F R A₁ A₂] (f : F) (x : A₂) :
@@ -631,7 +631,7 @@ end OfLinearEquiv
631631
section OfRingEquiv
632632

633633
/-- Promotes a linear ring_equiv to an AlgEquiv. -/
634-
@[simps apply symmApply toEquiv] -- Porting note: don't want redundant `toEquiv_symm_apply` simps
634+
@[simps apply symm_apply toEquiv] -- Porting note: don't want redundant `toEquiv_symm_apply` simps
635635
def ofRingEquiv {f : A₁ ≃+* A₂} (hf : ∀ x, f (algebraMap R A₁ x) = algebraMap R A₂ x) :
636636
A₁ ≃ₐ[R] A₂ :=
637637
{ f with
@@ -794,7 +794,7 @@ variable [Group G] [MulSemiringAction G A] [SMulCommClass G R A]
794794
795795
This is a stronger version of `MulSemiringAction.toRingEquiv` and
796796
`DistribMulAction.toLinearEquiv`. -/
797-
@[simps! apply symmApply toEquiv] -- Porting note: don't want redundant simps lemma `toEquiv_symm`
797+
@[simps! apply symm_apply toEquiv] -- Porting note: don't want redundant simps lemma `toEquiv_symm`
798798
def toAlgEquiv (g : G) : A ≃ₐ[R] A :=
799799
{ MulSemiringAction.toRingEquiv _ _ g, MulSemiringAction.toAlgHom R A g with }
800800
#align mul_semiring_action.to_alg_equiv MulSemiringAction.toAlgEquiv

Mathlib/Algebra/GCDMonoid/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -970,7 +970,7 @@ def associatesEquivOfUniqueUnits : Associates α ≃* α where
970970
right_inv _ := (Associates.out_mk _).trans <| normalize_eq _
971971
map_mul' := Associates.out_mul
972972
#align associates_equiv_of_unique_units associatesEquivOfUniqueUnits
973-
#align associates_equiv_of_unique_units_symm_apply associatesEquivOfUniqueUnits_symmApply
973+
#align associates_equiv_of_unique_units_symm_apply associatesEquivOfUniqueUnits_symm_apply
974974
#align associates_equiv_of_unique_units_apply associatesEquivOfUniqueUnits_apply
975975

976976
end UniqueUnit

Mathlib/Algebra/Group/Opposite.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -238,7 +238,7 @@ attribute [nolint simpComm] AddOpposite.commute_unop
238238
def opAddEquiv [Add α] : α ≃+ αᵐᵒᵖ :=
239239
{ opEquiv with map_add' := fun _ _ => rfl }
240240
#align mul_opposite.op_add_equiv MulOpposite.opAddEquiv
241-
#align mul_opposite.op_add_equiv_symm_apply MulOpposite.opAddEquiv_symmApply
241+
#align mul_opposite.op_add_equiv_symm_apply MulOpposite.opAddEquiv_symm_apply
242242

243243
@[simp]
244244
theorem opAddEquiv_toEquiv [Add α] : (opAddEquiv : α ≃+ αᵐᵒᵖ).toEquiv = opEquiv := rfl
@@ -306,7 +306,7 @@ variable {α}
306306
def opMulEquiv [Mul α] : α ≃* αᵃᵒᵖ :=
307307
{ opEquiv with map_mul' := fun _ _ => rfl }
308308
#align add_opposite.op_mul_equiv AddOpposite.opMulEquiv
309-
#align add_opposite.op_mul_equiv_symm_apply AddOpposite.opMulEquiv_symmApply
309+
#align add_opposite.op_mul_equiv_symm_apply AddOpposite.opMulEquiv_symm_apply
310310

311311
@[simp]
312312
theorem opMulEquiv_toEquiv [Mul α] : (opMulEquiv : α ≃* αᵃᵒᵖ).toEquiv = opEquiv :=
@@ -326,8 +326,8 @@ def MulEquiv.inv' (G : Type _) [DivisionMonoid G] : G ≃* Gᵐᵒᵖ :=
326326
{ (Equiv.inv G).trans opEquiv with map_mul' := fun x y => unop_injective <| mul_inv_rev x y }
327327
#align mul_equiv.inv' MulEquiv.inv'
328328
#align add_equiv.neg' AddEquiv.neg'
329-
#align mul_equiv.inv'_symm_apply MulEquiv.inv'_symmApply
330-
#align add_equiv.inv'_symm_apply AddEquiv.neg'_symmApply
329+
#align mul_equiv.inv'_symm_apply MulEquiv.inv'_symm_apply
330+
#align add_equiv.inv'_symm_apply AddEquiv.neg'_symm_apply
331331

332332
/-- A semigroup homomorphism `f : M →ₙ* N` such that `f x` commutes with `f y` for all `x, y`
333333
defines a semigroup homomorphism to `Nᵐᵒᵖ`. -/
@@ -560,13 +560,13 @@ def MulEquiv.op {α β} [Mul α] [Mul β] : α ≃* β ≃ (αᵐᵒᵖ ≃* β
560560
right_inv _ := rfl
561561
#align mul_equiv.op MulEquiv.op
562562
#align add_equiv.op AddEquiv.op
563-
#align mul_equiv.op_symm_apply_symm_apply MulEquiv.op_symm_apply_symmApply
563+
#align mul_equiv.op_symm_apply_symm_apply MulEquiv.op_symm_apply_symm_apply
564564
#align mul_equiv.op_apply_apply MulEquiv.op_apply_apply
565-
#align mul_equiv.op_apply_symm_apply MulEquiv.op_apply_symmApply
565+
#align mul_equiv.op_apply_symm_apply MulEquiv.op_apply_symm_apply
566566
#align mul_equiv.op_symm_apply_apply MulEquiv.op_symm_apply_apply
567-
#align add_equiv.op_symm_apply_symm_apply AddEquiv.op_symm_apply_symmApply
567+
#align add_equiv.op_symm_apply_symm_apply AddEquiv.op_symm_apply_symm_apply
568568
#align add_equiv.op_apply_apply AddEquiv.op_apply_apply
569-
#align add_equiv.op_apply_symm_apply AddEquiv.op_apply_symmApply
569+
#align add_equiv.op_apply_symm_apply AddEquiv.op_apply_symm_apply
570570
#align add_equiv.op_symm_apply_apply AddEquiv.op_symm_apply_apply
571571

572572
/-- The 'unopposite' of an iso `αᵐᵒᵖ ≃* βᵐᵒᵖ`. Inverse to `MulEquiv.op`. -/

Mathlib/Algebra/GroupRingAction/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ theorem toRingHom_injective [MulSemiringAction M R] [FaithfulSMul M R] :
7474
def MulSemiringAction.toRingEquiv [MulSemiringAction G R] (x : G) : R ≃+* R :=
7575
{ DistribMulAction.toAddEquiv R x, MulSemiringAction.toRingHom G R x with }
7676
#align mul_semiring_action.to_ring_equiv MulSemiringAction.toRingEquiv
77-
#align mul_semiring_action.to_ring_equiv_symm_apply MulSemiringAction.toRingEquiv_symmApply
77+
#align mul_semiring_action.to_ring_equiv_symm_apply MulSemiringAction.toRingEquiv_symm_apply
7878
#align mul_semiring_action.to_ring_equiv_apply MulSemiringAction.toRingEquiv_apply
7979

8080
section

Mathlib/Algebra/Hom/Equiv/Basic.lean

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -283,14 +283,14 @@ theorem equivLike_inv_eq_symm (f : M ≃* N) : EquivLike.inv f = f.symm := rfl
283283
def Simps.apply (e : M ≃* N) : M → N := e
284284
/-- See Note [custom simps projection] -/
285285
@[to_additive "See Note custom simps projection"]
286-
def Simps.symmApply (e : M ≃* N) : N → M :=
286+
def Simps.symm_apply (e : M ≃* N) : N → M :=
287287
e.symm
288-
#align mul_equiv.simps.symm_apply MulEquiv.Simps.symmApply
289-
#align add_equiv.simps.symm_apply AddEquiv.Simps.symmApply
288+
#align mul_equiv.simps.symm_apply MulEquiv.Simps.symm_apply
289+
#align add_equiv.simps.symm_apply AddEquiv.Simps.symm_apply
290290

291-
initialize_simps_projections AddEquiv (toFun → apply, invFun → symmApply)
291+
initialize_simps_projections AddEquiv (toFun → apply, invFun → symm_apply)
292292

293-
initialize_simps_projections MulEquiv (toFun → apply, invFun → symmApply)
293+
initialize_simps_projections MulEquiv (toFun → apply, invFun → symm_apply)
294294

295295
@[to_additive (attr := simp)]
296296
theorem toEquiv_symm (f : M ≃* N) : f.symm.toEquiv = f.toEquiv.symm := rfl
@@ -686,8 +686,8 @@ def piSubsingleton {ι : Type _} (M : ι → Type _) [∀ j, Mul (M j)] [Subsing
686686
#align add_equiv.Pi_subsingleton AddEquiv.piSubsingleton
687687
#align mul_equiv.Pi_subsingleton_apply MulEquiv.piSubsingleton_apply
688688
#align add_equiv.Pi_subsingleton_apply AddEquiv.piSubsingleton_apply
689-
#align mul_equiv.Pi_subsingleton_symm_apply MulEquiv.piSubsingleton_symmApply
690-
#align add_equiv.Pi_subsingleton_symm_apply AddEquiv.piSubsingleton_symmApply
689+
#align mul_equiv.Pi_subsingleton_symm_apply MulEquiv.piSubsingleton_symm_apply
690+
#align add_equiv.Pi_subsingleton_symm_apply AddEquiv.piSubsingleton_symm_apply
691691

692692
/-!
693693
# Groups
@@ -745,12 +745,12 @@ theorem MulHom.toMulEquiv_apply [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ*
745745
#align add_hom.to_add_equiv_apply AddHom.toAddEquiv_apply
746746

747747
@[to_additive (attr := simp)]
748-
theorem MulHom.toMulEquiv_symmApply [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ* M)
748+
theorem MulHom.toMulEquiv_symm_apply [Mul M] [Mul N] (f : M →ₙ* N) (g : N →ₙ* M)
749749
(h₁ : g.comp f = MulHom.id _) (h₂ : f.comp g = MulHom.id _) :
750750
(MulEquiv.symm (MulHom.toMulEquiv f g h₁ h₂) : N → M) = ↑g :=
751751
rfl
752-
#align mul_hom.to_mul_equiv_symm_apply MulHom.toMulEquiv_symmApply
753-
#align add_hom.to_add_equiv_symm_apply AddHom.toAddEquiv_symmApply
752+
#align mul_hom.to_mul_equiv_symm_apply MulHom.toMulEquiv_symm_apply
753+
#align add_hom.to_add_equiv_symm_apply AddHom.toAddEquiv_symm_apply
754754

755755
/-- Given a pair of monoid homomorphisms `f`, `g` such that `g.comp f = id` and `f.comp g = id`,
756756
returns an multiplicative equivalence with `toFun = f` and `invFun = g`. This constructor is
@@ -771,8 +771,8 @@ def MonoidHom.toMulEquiv [MulOneClass M] [MulOneClass N] (f : M →* N) (g : N
771771
#align add_monoid_hom.to_add_equiv AddMonoidHom.toAddEquiv
772772
#align monoid_hom.to_mul_equiv_apply MonoidHom.toMulEquiv_apply
773773
#align add_monoid_hom.to_add_equiv_apply AddMonoidHom.toAddEquiv_apply
774-
#align monoid_hom.to_mul_equiv_symm_apply MonoidHom.toMulEquiv_symmApply
775-
#align add_monoid_hom.to_add_equiv_symm_apply AddMonoidHom.toAddEquiv_symmApply
774+
#align monoid_hom.to_mul_equiv_symm_apply MonoidHom.toMulEquiv_symm_apply
775+
#align add_monoid_hom.to_add_equiv_symm_apply AddMonoidHom.toAddEquiv_symm_apply
776776

777777
namespace Equiv
778778

Mathlib/Algebra/Module/Equiv.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -290,14 +290,14 @@ def Simps.apply {R : Type _} {S : Type _} [Semiring R] [Semiring S]
290290
#align linear_equiv.simps.apply LinearEquiv.Simps.apply
291291

292292
/-- See Note [custom simps projection] -/
293-
def Simps.symmApply {R : Type _} {S : Type _} [Semiring R] [Semiring S]
293+
def Simps.symm_apply {R : Type _} {S : Type _} [Semiring R] [Semiring S]
294294
{σ : R →+* S} {σ' : S →+* R} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ]
295295
{M : Type _} {M₂ : Type _} [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂]
296296
(e : M ≃ₛₗ[σ] M₂) : M₂ → M :=
297297
e.symm
298-
#align linear_equiv.simps.symm_apply LinearEquiv.Simps.symmApply
298+
#align linear_equiv.simps.symm_apply LinearEquiv.Simps.symm_apply
299299

300-
initialize_simps_projections LinearEquiv (toFun → apply, invFun → symmApply)
300+
initialize_simps_projections LinearEquiv (toFun → apply, invFun → symm_apply)
301301

302302
@[simp]
303303
theorem invFun_eq_symm : e.invFun = e.symm :=
@@ -586,7 +586,7 @@ def _root_.RingEquiv.toSemilinearEquiv (f : R ≃+* S) :
586586
toFun := f
587587
map_smul' := f.map_mul }
588588
#align ring_equiv.to_semilinear_equiv RingEquiv.toSemilinearEquiv
589-
#align ring_equiv.to_semilinear_equiv_symm_apply RingEquiv.toSemilinearEquiv_symmApply
589+
#align ring_equiv.to_semilinear_equiv_symm_apply RingEquiv.toSemilinearEquiv_symm_apply
590590

591591
variable [Semiring R₁] [Semiring R₂] [Semiring R₃]
592592

@@ -624,7 +624,7 @@ def restrictScalars (f : M ≃ₗ[S] M₂) : M ≃ₗ[R] M₂ :=
624624
right_inv := f.right_inv }
625625
#align linear_equiv.restrict_scalars LinearEquiv.restrictScalars
626626
#align linear_equiv.restrict_scalars_apply LinearEquiv.restrictScalars_apply
627-
#align linear_equiv.restrict_scalars_symm_apply LinearEquiv.restrictScalars_symmApply
627+
#align linear_equiv.restrict_scalars_symm_apply LinearEquiv.restrictScalars_symm_apply
628628

629629
theorem restrictScalars_injective :
630630
Function.Injective (restrictScalars R : (M ≃ₗ[S] M₂) → M ≃ₗ[R] M₂) := fun _ _ h =>
@@ -708,7 +708,7 @@ def ofSubsingleton : M ≃ₗ[R] M₂ :=
708708
left_inv := fun _ => Subsingleton.elim _ _
709709
right_inv := fun _ => Subsingleton.elim _ _ }
710710
#align linear_equiv.of_subsingleton LinearEquiv.ofSubsingleton
711-
#align linear_equiv.of_subsingleton_symm_apply LinearEquiv.ofSubsingleton_symmApply
711+
#align linear_equiv.of_subsingleton_symm_apply LinearEquiv.ofSubsingleton_symm_apply
712712

713713
@[simp]
714714
theorem ofSubsingleton_self : ofSubsingleton M M = refl R M := by
@@ -735,7 +735,7 @@ def compHom.toLinearEquiv {R S : Type _} [Semiring R] [Semiring S] (g : R ≃+*
735735
invFun := (g.symm : S → R)
736736
map_smul' := g.map_mul }
737737
#align module.comp_hom.to_linear_equiv Module.compHom.toLinearEquiv
738-
#align module.comp_hom.to_linear_equiv_symm_apply Module.compHom.toLinearEquiv_symmApply
738+
#align module.comp_hom.to_linear_equiv_symm_apply Module.compHom.toLinearEquiv_symm_apply
739739

740740
end Module
741741

@@ -753,7 +753,7 @@ def toLinearEquiv (s : S) : M ≃ₗ[R] M :=
753753
{ toAddEquiv M s, toLinearMap R M s with }
754754
#align distrib_mul_action.to_linear_equiv DistribMulAction.toLinearEquiv
755755
#align distrib_mul_action.to_linear_equiv_apply DistribMulAction.toLinearEquiv_apply
756-
#align distrib_mul_action.to_linear_equiv_symm_apply DistribMulAction.toLinearEquiv_symmApply
756+
#align distrib_mul_action.to_linear_equiv_symm_apply DistribMulAction.toLinearEquiv_symm_apply
757757

758758
/-- Each element of the group defines a module automorphism.
759759

Mathlib/Algebra/Module/LinearMap.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1255,7 +1255,7 @@ def moduleEndSelfOp : R ≃+* Module.End Rᵐᵒᵖ R :=
12551255
left_inv := mul_one
12561256
right_inv := fun _ ↦ LinearMap.ext_ring_op <| mul_one _ }
12571257
#align module.module_End_self_op Module.moduleEndSelfOp
1258-
#align module.module_End_self_op_symm_apply Module.moduleEndSelfOp_symmApply
1258+
#align module.module_End_self_op_symm_apply Module.moduleEndSelfOp_symm_apply
12591259
#align module.module_End_self_op_apply Module.moduleEndSelfOp_apply
12601260

12611261
theorem End.natCast_def (n : ℕ) [AddCommMonoid N₁] [Module R N₁] :

Mathlib/Algebra/Module/Submodule/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -456,7 +456,7 @@ def restrictScalarsEquiv (p : Submodule R M) : p.restrictScalars S ≃ₗ[R] p :
456456
invFun := id
457457
map_smul' := fun _ _ => rfl }
458458
#align submodule.restrict_scalars_equiv Submodule.restrictScalarsEquiv
459-
#align submodule.restrict_scalars_equiv_symm_apply Submodule.restrictScalarsEquiv_symmApply
459+
#align submodule.restrict_scalars_equiv_symm_apply Submodule.restrictScalarsEquiv_symm_apply
460460

461461
end RestrictScalars
462462

Mathlib/Algebra/Module/ULift.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -168,7 +168,7 @@ instance module' [Semiring R] [AddCommMonoid M] [Module R M] : Module R (ULift M
168168
#align ulift.module' ULift.module'
169169

170170
/-- The `R`-linear equivalence between `ULift M` and `M`. -/
171-
@[simps apply symmApply]
171+
@[simps apply symm_apply]
172172
def moduleEquiv [Semiring R] [AddCommMonoid M] [Module R M] : ULift.{w} M ≃ₗ[R] M where
173173
toFun := ULift.down
174174
invFun := ULift.up

Mathlib/Algebra/Order/Field/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -31,15 +31,15 @@ variable [LinearOrderedSemifield α] {a b c d e : α} {m n : ℤ}
3131
def OrderIso.mulLeft₀ (a : α) (ha : 0 < a) : α ≃o α :=
3232
{ Equiv.mulLeft₀ a ha.ne' with map_rel_iff' := @fun _ _ => mul_le_mul_left ha }
3333
#align order_iso.mul_left₀ OrderIso.mulLeft₀
34-
#align order_iso.mul_left₀_symm_apply OrderIso.mulLeft₀_symmApply
34+
#align order_iso.mul_left₀_symm_apply OrderIso.mulLeft₀_symm_apply
3535
#align order_iso.mul_left₀_apply OrderIso.mulLeft₀_apply
3636

3737
/-- `Equiv.mulRight₀` as an order_iso. -/
3838
@[simps! (config := { simpRhs := true })]
3939
def OrderIso.mulRight₀ (a : α) (ha : 0 < a) : α ≃o α :=
4040
{ Equiv.mulRight₀ a ha.ne' with map_rel_iff' := @fun _ _ => mul_le_mul_right ha }
4141
#align order_iso.mul_right₀ OrderIso.mulRight₀
42-
#align order_iso.mul_right₀_symm_apply OrderIso.mulRight₀_symmApply
42+
#align order_iso.mul_right₀_symm_apply OrderIso.mulRight₀_symm_apply
4343
#align order_iso.mul_right₀_apply OrderIso.mulRight₀_apply
4444

4545
/-!

0 commit comments

Comments
 (0)