Skip to content

Commit 9dd22b8

Browse files
committed
chore: use ofReal instead of of_real in lemma names (#4934)
1 parent 3280dcc commit 9dd22b8

File tree

15 files changed

+101
-105
lines changed

15 files changed

+101
-105
lines changed

Mathlib/Analysis/Complex/RealDeriv.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -135,17 +135,17 @@ theorem HasDerivWithinAt.complexToReal_fderiv {f : ℂ → ℂ} {s : Set ℂ} {f
135135

136136
/-- If a complex function `e` is differentiable at a real point, then its restriction to `ℝ` is
137137
differentiable there as a function `ℝ → ℂ`, with the same derivative. -/
138-
theorem HasDerivAt.comp_of_real (hf : HasDerivAt e e' ↑z) : HasDerivAt (fun y : ℝ => e ↑y) e' z :=
138+
theorem HasDerivAt.comp_ofReal (hf : HasDerivAt e e' ↑z) : HasDerivAt (fun y : ℝ => e ↑y) e' z :=
139139
by simpa only [ofRealClm_apply, ofReal_one, mul_one] using hf.comp z ofRealClm.hasDerivAt
140-
#align has_deriv_at.comp_of_real HasDerivAt.comp_of_real
140+
#align has_deriv_at.comp_of_real HasDerivAt.comp_ofReal
141141

142142
/-- If a function `f : ℝ → ℝ` is differentiable at a (real) point `x`, then it is also
143143
differentiable as a function `ℝ → ℂ`. -/
144-
theorem HasDerivAt.of_real_comp {f : ℝ → ℝ} {u : ℝ} (hf : HasDerivAt f u z) :
144+
theorem HasDerivAt.ofReal_comp {f : ℝ → ℝ} {u : ℝ} (hf : HasDerivAt f u z) :
145145
HasDerivAt (fun y : ℝ => ↑(f y) : ℝ → ℂ) u z := by
146146
simpa only [ofRealClm_apply, ofReal_one, real_smul, mul_one] using
147147
ofRealClm.hasDerivAt.scomp z hf
148-
#align has_deriv_at.of_real_comp HasDerivAt.of_real_comp
148+
#align has_deriv_at.of_real_comp HasDerivAt.ofReal_comp
149149

150150
end RealDerivOfComplex
151151

Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean

Lines changed: 11 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -218,16 +218,16 @@ theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
218218
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
219219
#align complex.tan_arg Complex.tan_arg
220220

221-
theorem arg_of_real_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
222-
#align complex.arg_of_real_of_nonneg Complex.arg_of_real_of_nonneg
221+
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
222+
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
223223

224224
theorem arg_eq_zero_iff {z : ℂ} : arg z = 00 ≤ z.re ∧ z.im = 0 := by
225225
refine' ⟨fun h => _, _⟩
226226
· rw [← abs_mul_cos_add_sin_mul_I z, h]
227227
simp [abs.nonneg]
228228
· cases' z with x y
229229
rintro ⟨h, rfl : y = 0
230-
exact arg_of_real_of_nonneg h
230+
exact arg_ofReal_of_nonneg h
231231
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
232232

233233
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
@@ -246,9 +246,9 @@ theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
246246
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
247247
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
248248

249-
theorem arg_of_real_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
249+
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
250250
arg_eq_pi_iff.2 ⟨hx, rfl⟩
251-
#align complex.arg_of_real_of_neg Complex.arg_of_real_of_neg
251+
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
252252

253253
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 00 < z.im := by
254254
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
@@ -390,10 +390,10 @@ theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
390390
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
391391
· rw [(ext rfl hi : x = x.re)]
392392
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
393-
· rw [arg_of_real_of_neg hr, ← ofReal_neg, arg_of_real_of_nonneg (Left.neg_pos_iff.2 hr).le]
393+
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
394394
simp [hr]
395395
· simp [hr, hi, Real.pi_ne_zero]
396-
· rw [arg_of_real_of_nonneg hr.le, ← ofReal_neg, arg_of_real_of_neg (Left.neg_neg_iff.2 hr)]
396+
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
397397
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
398398
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
399399
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
@@ -404,10 +404,10 @@ theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
404404
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
405405
· rw [(ext rfl hi : x = x.re)]
406406
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
407-
· rw [arg_of_real_of_neg hr, ← ofReal_neg, arg_of_real_of_nonneg (Left.neg_pos_iff.2 hr).le]
407+
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
408408
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
409409
· simp [hr, hi, Real.pi_ne_zero.symm]
410-
· rw [arg_of_real_of_nonneg hr.le, ← ofReal_neg, arg_of_real_of_neg (Left.neg_neg_iff.2 hr)]
410+
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
411411
simp [hr]
412412
·
413413
simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
@@ -419,12 +419,10 @@ theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = a
419419
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
420420
· rw [(ext rfl hi : x = x.re)]
421421
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
422-
·
423-
rw [arg_of_real_of_neg hr, ← ofReal_neg, arg_of_real_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
422+
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
424423
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
425424
· exact False.elim (hx (ext hr hi))
426-
·
427-
rw [arg_of_real_of_nonneg hr.le, ← ofReal_neg, arg_of_real_of_neg (Left.neg_neg_iff.2 hr),
425+
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
428426
Real.Angle.coe_zero, zero_add]
429427
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
430428
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle

Mathlib/Analysis/SpecialFunctions/Complex/Log.lean

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -70,24 +70,24 @@ theorem exp_inj_of_neg_pi_lt_of_le_pi {x y : ℂ} (hx₁ : -π < x.im) (hx₂ :
7070
rw [← log_exp hx₁ hx₂, ← log_exp hy₁ hy₂, hxy]
7171
#align complex.exp_inj_of_neg_pi_lt_of_le_pi Complex.exp_inj_of_neg_pi_lt_of_le_pi
7272

73-
theorem of_real_log {x : ℝ} (hx : 0 ≤ x) : (x.log : ℂ) = log x :=
73+
theorem ofReal_log {x : ℝ} (hx : 0 ≤ x) : (x.log : ℂ) = log x :=
7474
Complex.ext (by rw [log_re, ofReal_re, abs_of_nonneg hx])
75-
(by rw [ofReal_im, log_im, arg_of_real_of_nonneg hx])
76-
#align complex.of_real_log Complex.of_real_log
75+
(by rw [ofReal_im, log_im, arg_ofReal_of_nonneg hx])
76+
#align complex.of_real_log Complex.ofReal_log
7777

78-
theorem log_of_real_re (x : ℝ) : (log (x : ℂ)).re = Real.log x := by simp [log_re]
79-
#align complex.log_of_real_re Complex.log_of_real_re
78+
theorem log_ofReal_re (x : ℝ) : (log (x : ℂ)).re = Real.log x := by simp [log_re]
79+
#align complex.log_of_real_re Complex.log_ofReal_re
8080

81-
theorem log_of_real_mul {r : ℝ} (hr : 0 < r) {x : ℂ} (hx : x ≠ 0) :
81+
theorem log_ofReal_mul {r : ℝ} (hr : 0 < r) {x : ℂ} (hx : x ≠ 0) :
8282
log (r * x) = Real.log r + log x := by
8383
replace hx := Complex.abs.ne_zero_iff.mpr hx
8484
simp_rw [log, map_mul, abs_ofReal, arg_real_mul _ hr, abs_of_pos hr, Real.log_mul hr.ne' hx,
8585
ofReal_add, add_assoc]
86-
#align complex.log_of_real_mul Complex.log_of_real_mul
86+
#align complex.log_of_real_mul Complex.log_ofReal_mul
8787

88-
theorem log_mul_of_real (r : ℝ) (hr : 0 < r) (x : ℂ) (hx : x ≠ 0) :
89-
log (x * r) = Real.log r + log x := by rw [mul_comm, log_of_real_mul hr hx, add_comm]
90-
#align complex.log_mul_of_real Complex.log_mul_of_real
88+
theorem log_mul_ofReal (r : ℝ) (hr : 0 < r) (x : ℂ) (hx : x ≠ 0) :
89+
log (x * r) = Real.log r + log x := by rw [mul_comm, log_ofReal_mul hr hx, add_comm]
90+
#align complex.log_mul_of_real Complex.log_mul_ofReal
9191

9292
@[simp]
9393
theorem log_zero : log 0 = 0 := by simp [log]
@@ -122,7 +122,7 @@ theorem log_conj (x : ℂ) (h : x.arg ≠ π) : log (conj x) = conj (log x) := b
122122
theorem log_inv_eq_ite (x : ℂ) : log x⁻¹ = if x.arg = π then -conj (log x) else -log x := by
123123
by_cases hx : x = 0
124124
· simp [hx]
125-
rw [inv_def, log_mul_of_real, Real.log_inv, ofReal_neg, ← sub_eq_neg_add, log_conj_eq_ite]
125+
rw [inv_def, log_mul_ofReal, Real.log_inv, ofReal_neg, ← sub_eq_neg_add, log_conj_eq_ite]
126126
· simp_rw [log, map_add, map_mul, conj_ofReal, conj_I, normSq_eq_abs, Real.log_pow,
127127
Nat.cast_two, ofReal_mul, ofReal_bit0, ofReal_one, neg_add, mul_neg, two_mul, neg_neg]
128128
norm_num; rw [two_mul] -- Porting note: added to simplify `↑2`

Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ theorem integrableOn_Ioi_cpow_of_lt {a : ℂ} (ha : a.re < -1) {c : ℝ} (hc : 0
9797
rw [Complex.norm_eq_abs, Complex.abs_cpow_eq_rpow_re_of_pos (hc.trans hx)]
9898
· refine' ContinuousOn.aestronglyMeasurable (fun t ht => _) measurableSet_Ioi
9999
exact
100-
(Complex.continuousAt_of_real_cpow_const _ _ (Or.inr (hc.trans ht).ne')).continuousWithinAt
100+
(Complex.continuousAt_ofReal_cpow_const _ _ (Or.inr (hc.trans ht).ne')).continuousWithinAt
101101
#align integrable_on_Ioi_cpow_of_lt integrableOn_Ioi_cpow_of_lt
102102

103103
theorem integral_Ioi_cpow_of_lt {a : ℂ} (ha : a.re < -1) {c : ℝ} (hc : 0 < c) :

Mathlib/Analysis/SpecialFunctions/Integrals.lean

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -105,16 +105,16 @@ theorem intervalIntegrable_cpow {r : ℂ} (h : 0 ≤ r.re ∨ (0 : ℝ) ∉ [[a,
105105
by_cases h2 : (0 : ℝ) ∉ [[a, b]]
106106
· -- Easy case #1: 0 ∉ [a, b] -- use continuity.
107107
refine' (ContinuousAt.continuousOn fun x hx => _).intervalIntegrable
108-
exact Complex.continuousAt_of_real_cpow_const _ _ (Or.inr <| ne_of_mem_of_not_mem hx h2)
108+
exact Complex.continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_mem_of_not_mem hx h2)
109109
rw [eq_false h2, or_false_iff] at h
110110
rcases lt_or_eq_of_le h with (h' | h')
111111
· -- Easy case #2: 0 < re r -- again use continuity
112-
exact (Complex.continuous_of_real_cpow_const h').intervalIntegrable _ _
112+
exact (Complex.continuous_ofReal_cpow_const h').intervalIntegrable _ _
113113
-- Now the hard case: re r = 0 and 0 is in the interval.
114114
refine' (IntervalIntegrable.intervalIntegrable_norm_iff _).mp _
115115
· refine' (measurable_of_continuousOn_compl_singleton (0 : ℝ) _).aestronglyMeasurable
116116
exact ContinuousAt.continuousOn fun x hx =>
117-
Complex.continuousAt_of_real_cpow_const x r (Or.inr hx)
117+
Complex.continuousAt_ofReal_cpow_const x r (Or.inr hx)
118118
-- reduce to case of integral over `[0, c]`
119119
suffices : ∀ c : ℝ, IntervalIntegrable (fun x : ℝ => ‖(x:ℂ) ^ r‖) μ 0 c
120120
exact (this a).symm.trans (this b)
@@ -138,7 +138,7 @@ theorem intervalIntegrable_cpow {r : ℂ} (h : 0 ≤ r.re ∨ (0 : ℝ) ∉ [[a,
138138
isCompact_singleton
139139
· have : ∀ x : ℝ, x ∈ Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖(x : ℂ) ^ r‖ := by
140140
intro x hx
141-
rw [Complex.of_real_cpow_of_nonpos hx.2.le, norm_mul, ← Complex.ofReal_neg,
141+
rw [Complex.ofReal_cpow_of_nonpos hx.2.le, norm_mul, ← Complex.ofReal_neg,
142142
Complex.norm_eq_abs (_ ^ _), Complex.abs_cpow_eq_rpow_re_of_pos (neg_pos.mpr hx.2), ← h',
143143
rpow_zero, one_mul]
144144
refine' IntegrableOn.congr_fun _ this measurableSet_Ioo
@@ -178,7 +178,7 @@ theorem intervalIntegrable_cpow' {r : ℂ} (h : -1 < r.re) :
178178
refine' m.congr_fun (fun x hx => _) measurableSet_Ioc
179179
dsimp only
180180
have : -x ≤ 0 := by linarith [hx.1]
181-
rw [Complex.of_real_cpow_of_nonpos this, mul_comm]
181+
rw [Complex.ofReal_cpow_of_nonpos this, mul_comm]
182182
simp
183183
#align interval_integral.interval_integrable_cpow' intervalIntegral.intervalIntegrable_cpow'
184184

@@ -328,7 +328,7 @@ theorem integral_cpow {r : ℂ} (h : -1 < r.re ∨ r ≠ -1 ∧ (0 : ℝ) ∉ [[
328328
by_cases hab : (0 : ℝ) ∉ [[a, b]]
329329
· apply integral_eq_sub_of_hasDerivAt (fun x hx => ?_)
330330
(intervalIntegrable_cpow (r := r) <| Or.inr hab)
331-
refine' hasDerivAt_of_real_cpow (ne_of_mem_of_not_mem hx hab) _
331+
refine' hasDerivAt_ofReal_cpow (ne_of_mem_of_not_mem hx hab) _
332332
contrapose! hr; rwa [add_eq_zero_iff_eq_neg]
333333
replace h : -1 < r.re; · tauto
334334
suffices ∀ c : ℝ, (∫ x : ℝ in (0)..c, (x : ℂ) ^ r) =
@@ -338,9 +338,9 @@ theorem integral_cpow {r : ℂ} (h : -1 < r.re ∨ r ≠ -1 ∧ (0 : ℝ) ∉ [[
338338
ring
339339
intro c
340340
apply integral_eq_sub_of_hasDeriv_right
341-
· refine' ((Complex.continuous_of_real_cpow_const _).div_const _).continuousOn
341+
· refine' ((Complex.continuous_ofReal_cpow_const _).div_const _).continuousOn
342342
rwa [Complex.add_re, Complex.one_re, ← neg_lt_iff_pos_add]
343-
· refine' fun x hx => (hasDerivAt_of_real_cpow _ _).hasDerivWithinAt
343+
· refine' fun x hx => (hasDerivAt_ofReal_cpow _ _).hasDerivWithinAt
344344
· rcases le_total c 0 with (hc | hc)
345345
· rw [max_eq_left hc] at hx; exact hx.2.ne
346346
· rw [min_eq_left hc] at hx; exact hx.1.ne'
@@ -467,7 +467,7 @@ theorem integral_exp_mul_complex {c : ℂ} (hc : c ≠ 0) :
467467
conv => congr
468468
rw [← mul_div_cancel (Complex.exp (c * x)) hc]
469469
apply ((Complex.hasDerivAt_exp _).comp x _).div_const c
470-
simpa only [mul_one] using ((hasDerivAt_id (x : ℂ)).const_mul _).comp_of_real
470+
simpa only [mul_one] using ((hasDerivAt_id (x : ℂ)).const_mul _).comp_ofReal
471471
rw [integral_deriv_eq_sub' _ (funext fun x => (D x).deriv) fun x _ => (D x).differentiableAt]
472472
· ring
473473
· apply Continuous.continuousOn; continuity
@@ -524,7 +524,7 @@ theorem integral_cos_mul_complex {z : ℂ} (hz : z ≠ 0) (a b : ℝ) :
524524
have a := Complex.hasDerivAt_sin (↑x * z)
525525
have b : HasDerivAt (fun y => y * z : ℂ → ℂ) z ↑x := hasDerivAt_mul_const _
526526
have c : HasDerivAt (fun y : ℂ => Complex.sin (y * z)) _ ↑x := HasDerivAt.comp (𝕜 := ℂ) x a b
527-
have d := HasDerivAt.comp_of_real (c.div_const z)
527+
have d := HasDerivAt.comp_ofReal (c.div_const z)
528528
simp only [mul_comm] at d
529529
convert d using 1
530530
conv_rhs => arg 1; rw [mul_comm]
@@ -575,7 +575,7 @@ theorem integral_mul_cpow_one_add_sq {t : ℂ} (ht : t ≠ -1) :
575575
(Or.inl hz)).div_const (2 * (t + 1)) using 1
576576
field_simp
577577
ring
578-
convert (HasDerivAt.comp (↑x) (g _) f).comp_of_real using 1
578+
convert (HasDerivAt.comp (↑x) (g _) f).comp_ofReal using 1
579579
· simp
580580
· field_simp; ring
581581
· exact_mod_cast add_pos_of_pos_of_nonneg zero_lt_one (sq_nonneg x)
@@ -595,7 +595,7 @@ theorem integral_mul_rpow_one_add_sq {t : ℝ} (ht : t ≠ -1) :
595595
have : ∀ x s : ℝ, (((↑1 + x ^ 2) ^ s : ℝ) : ℂ) = (1 + (x : ℂ) ^ 2) ^ (s:ℂ) := by
596596
intro x s
597597
norm_cast
598-
rw [of_real_cpow, ofReal_add, ofReal_pow, ofReal_one]
598+
rw [ofReal_cpow, ofReal_add, ofReal_pow, ofReal_one]
599599
exact add_nonneg zero_le_one (sq_nonneg x)
600600
rw [← ofReal_inj]
601601
convert integral_mul_cpow_one_add_sq (_ : (t : ℂ) ≠ -1)

Mathlib/Analysis/SpecialFunctions/Pow/Complex.lean

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -164,9 +164,7 @@ theorem cpow_nat_inv_pow (x : ℂ) {n : ℕ} (hn : n ≠ 0) : HPow.hPow (x ^ (n
164164

165165
#align complex.cpow_nat_inv_pow Complex.cpow_nat_inv_pow
166166

167-
-- TODO: should log_of_real_mul and of_real_log use ofReal in their names?
168-
169-
theorem mul_cpow_of_real_nonneg {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (r : ℂ) :
167+
theorem mul_cpow_ofReal_nonneg {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (r : ℂ) :
170168
((a : ℂ) * (b : ℂ)) ^ r = (a : ℂ) ^ r * (b : ℂ) ^ r := by
171169
rcases eq_or_ne r 0 with (rfl | hr)
172170
· simp only [cpow_zero, mul_one]
@@ -176,9 +174,9 @@ theorem mul_cpow_of_real_nonneg {a b : ℝ} (ha : 0 ≤ a) (hb : 0 ≤ b) (r :
176174
· rw [ofReal_zero, MulZeroClass.mul_zero, zero_cpow hr, MulZeroClass.mul_zero]
177175
have ha'' : (a : ℂ) ≠ 0 := ofReal_ne_zero.mpr ha'.ne'
178176
have hb'' : (b : ℂ) ≠ 0 := ofReal_ne_zero.mpr hb'.ne'
179-
rw [cpow_def_of_ne_zero (mul_ne_zero ha'' hb''), log_of_real_mul ha' hb'', of_real_log ha,
177+
rw [cpow_def_of_ne_zero (mul_ne_zero ha'' hb''), log_ofReal_mul ha' hb'', ofReal_log ha,
180178
add_mul, exp_add, ← cpow_def_of_ne_zero ha'', ← cpow_def_of_ne_zero hb'']
181-
#align complex.mul_cpow_of_real_nonneg Complex.mul_cpow_of_real_nonneg
179+
#align complex.mul_cpow_of_real_nonneg Complex.mul_cpow_ofReal_nonneg
182180

183181
theorem inv_cpow_eq_ite (x : ℂ) (n : ℂ) :
184182
x⁻¹ ^ n = if x.arg = π then conj (x ^ conj n)⁻¹ else (x ^ n)⁻¹ := by

Mathlib/Analysis/SpecialFunctions/Pow/Continuity.lean

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -385,7 +385,7 @@ theorem continuousAt_cpow_const_of_re_pos {z w : ℂ} (hz : 0 ≤ re z ∨ im z
385385
#align complex.continuous_at_cpow_const_of_re_pos Complex.continuousAt_cpow_const_of_re_pos
386386

387387
/-- Continuity of `(x, y) ↦ x ^ y` as a function on `ℝ × ℂ`. -/
388-
theorem continuousAt_of_real_cpow (x : ℝ) (y : ℂ) (h : 0 < y.re ∨ x ≠ 0) :
388+
theorem continuousAt_ofReal_cpow (x : ℝ) (y : ℂ) (h : 0 < y.re ∨ x ≠ 0) :
389389
ContinuousAt (fun p => (p.1 : ℂ) ^ p.2 : ℝ × ℂ → ℂ) (x, y) := by
390390
rcases lt_trichotomy (0 : ℝ) x with (hx | rfl | hx)
391391
· -- x > 0 : easy case
@@ -404,25 +404,25 @@ theorem continuousAt_of_real_cpow (x : ℝ) (y : ℂ) (h : 0 < y.re ∨ x ≠ 0)
404404
· -- x < 0 : difficult case
405405
suffices ContinuousAt (fun p => (-(p.1 : ℂ)) ^ p.2 * exp (π * I * p.2) : ℝ × ℂ → ℂ) (x, y) by
406406
refine' this.congr (eventually_of_mem (prod_mem_nhds (Iio_mem_nhds hx) univ_mem) _)
407-
exact fun p hp => (of_real_cpow_of_nonpos (le_of_lt hp.1) p.2).symm
407+
exact fun p hp => (ofReal_cpow_of_nonpos (le_of_lt hp.1) p.2).symm
408408
have A : ContinuousAt (fun p => ⟨-↑p.1, p.2⟩ : ℝ × ℂ → ℂ × ℂ) (x, y) :=
409409
ContinuousAt.prod_map continuous_ofReal.continuousAt.neg continuousAt_id
410410
apply ContinuousAt.mul
411411
· refine' (continuousAt_cpow (Or.inl _)).comp A
412412
rwa [neg_re, ofReal_re, neg_pos]
413413
· exact (continuous_exp.comp (continuous_const.mul continuous_snd)).continuousAt
414-
#align complex.continuous_at_of_real_cpow Complex.continuousAt_of_real_cpow
414+
#align complex.continuous_at_of_real_cpow Complex.continuousAt_ofReal_cpow
415415

416-
theorem continuousAt_of_real_cpow_const (x : ℝ) (y : ℂ) (h : 0 < y.re ∨ x ≠ 0) :
416+
theorem continuousAt_ofReal_cpow_const (x : ℝ) (y : ℂ) (h : 0 < y.re ∨ x ≠ 0) :
417417
ContinuousAt (fun a => (a : ℂ) ^ y : ℝ → ℂ) x :=
418-
@ContinuousAt.comp _ _ _ _ _ _ _ _ x (continuousAt_of_real_cpow x y h)
418+
@ContinuousAt.comp _ _ _ _ _ _ _ _ x (continuousAt_ofReal_cpow x y h)
419419
(continuous_id.prod_mk continuous_const).continuousAt
420-
#align complex.continuous_at_of_real_cpow_const Complex.continuousAt_of_real_cpow_const
420+
#align complex.continuous_at_of_real_cpow_const Complex.continuousAt_ofReal_cpow_const
421421

422-
theorem continuous_of_real_cpow_const {y : ℂ} (hs : 0 < y.re) :
422+
theorem continuous_ofReal_cpow_const {y : ℂ} (hs : 0 < y.re) :
423423
Continuous (fun x => (x : ℂ) ^ y : ℝ → ℂ) :=
424-
continuous_iff_continuousAt.mpr fun x => continuousAt_of_real_cpow_const x y (Or.inl hs)
425-
#align complex.continuous_of_real_cpow_const Complex.continuous_of_real_cpow_const
424+
continuous_iff_continuousAt.mpr fun x => continuousAt_ofReal_cpow_const x y (Or.inl hs)
425+
#align complex.continuous_of_real_cpow_const Complex.continuous_ofReal_cpow_const
426426

427427
end Complex
428428

0 commit comments

Comments
 (0)