@@ -105,16 +105,16 @@ theorem intervalIntegrable_cpow {r : ℂ} (h : 0 ≤ r.re ∨ (0 : ℝ) ∉ [[a,
105
105
by_cases h2 : (0 : ℝ) ∉ [[a, b]]
106
106
· -- Easy case #1: 0 ∉ [a, b] -- use continuity.
107
107
refine' (ContinuousAt.continuousOn fun x hx => _).intervalIntegrable
108
- exact Complex.continuousAt_of_real_cpow_const _ _ (Or.inr <| ne_of_mem_of_not_mem hx h2)
108
+ exact Complex.continuousAt_ofReal_cpow_const _ _ (Or.inr <| ne_of_mem_of_not_mem hx h2)
109
109
rw [eq_false h2, or_false_iff] at h
110
110
rcases lt_or_eq_of_le h with (h' | h')
111
111
· -- Easy case #2: 0 < re r -- again use continuity
112
- exact (Complex.continuous_of_real_cpow_const h').intervalIntegrable _ _
112
+ exact (Complex.continuous_ofReal_cpow_const h').intervalIntegrable _ _
113
113
-- Now the hard case: re r = 0 and 0 is in the interval.
114
114
refine' (IntervalIntegrable.intervalIntegrable_norm_iff _).mp _
115
115
· refine' (measurable_of_continuousOn_compl_singleton (0 : ℝ) _).aestronglyMeasurable
116
116
exact ContinuousAt.continuousOn fun x hx =>
117
- Complex.continuousAt_of_real_cpow_const x r (Or.inr hx)
117
+ Complex.continuousAt_ofReal_cpow_const x r (Or.inr hx)
118
118
-- reduce to case of integral over `[0, c]`
119
119
suffices : ∀ c : ℝ, IntervalIntegrable (fun x : ℝ => ‖(x:ℂ) ^ r‖) μ 0 c
120
120
exact (this a).symm.trans (this b)
@@ -138,7 +138,7 @@ theorem intervalIntegrable_cpow {r : ℂ} (h : 0 ≤ r.re ∨ (0 : ℝ) ∉ [[a,
138
138
isCompact_singleton
139
139
· have : ∀ x : ℝ, x ∈ Ioo c 0 → ‖Complex.exp (↑π * Complex.I * r)‖ = ‖(x : ℂ) ^ r‖ := by
140
140
intro x hx
141
- rw [Complex.of_real_cpow_of_nonpos hx.2 .le, norm_mul, ← Complex.ofReal_neg,
141
+ rw [Complex.ofReal_cpow_of_nonpos hx.2 .le, norm_mul, ← Complex.ofReal_neg,
142
142
Complex.norm_eq_abs (_ ^ _), Complex.abs_cpow_eq_rpow_re_of_pos (neg_pos.mpr hx.2 ), ← h',
143
143
rpow_zero, one_mul]
144
144
refine' IntegrableOn.congr_fun _ this measurableSet_Ioo
@@ -178,7 +178,7 @@ theorem intervalIntegrable_cpow' {r : ℂ} (h : -1 < r.re) :
178
178
refine' m.congr_fun (fun x hx => _) measurableSet_Ioc
179
179
dsimp only
180
180
have : -x ≤ 0 := by linarith [hx.1 ]
181
- rw [Complex.of_real_cpow_of_nonpos this, mul_comm]
181
+ rw [Complex.ofReal_cpow_of_nonpos this, mul_comm]
182
182
simp
183
183
#align interval_integral.interval_integrable_cpow' intervalIntegral.intervalIntegrable_cpow'
184
184
@@ -328,7 +328,7 @@ theorem integral_cpow {r : ℂ} (h : -1 < r.re ∨ r ≠ -1 ∧ (0 : ℝ) ∉ [[
328
328
by_cases hab : (0 : ℝ) ∉ [[a, b]]
329
329
· apply integral_eq_sub_of_hasDerivAt (fun x hx => ?_)
330
330
(intervalIntegrable_cpow (r := r) <| Or.inr hab)
331
- refine' hasDerivAt_of_real_cpow (ne_of_mem_of_not_mem hx hab) _
331
+ refine' hasDerivAt_ofReal_cpow (ne_of_mem_of_not_mem hx hab) _
332
332
contrapose! hr; rwa [add_eq_zero_iff_eq_neg]
333
333
replace h : -1 < r.re; · tauto
334
334
suffices ∀ c : ℝ, (∫ x : ℝ in (0 )..c, (x : ℂ) ^ r) =
@@ -338,9 +338,9 @@ theorem integral_cpow {r : ℂ} (h : -1 < r.re ∨ r ≠ -1 ∧ (0 : ℝ) ∉ [[
338
338
ring
339
339
intro c
340
340
apply integral_eq_sub_of_hasDeriv_right
341
- · refine' ((Complex.continuous_of_real_cpow_const _).div_const _).continuousOn
341
+ · refine' ((Complex.continuous_ofReal_cpow_const _).div_const _).continuousOn
342
342
rwa [Complex.add_re, Complex.one_re, ← neg_lt_iff_pos_add]
343
- · refine' fun x hx => (hasDerivAt_of_real_cpow _ _).hasDerivWithinAt
343
+ · refine' fun x hx => (hasDerivAt_ofReal_cpow _ _).hasDerivWithinAt
344
344
· rcases le_total c 0 with (hc | hc)
345
345
· rw [max_eq_left hc] at hx; exact hx.2 .ne
346
346
· rw [min_eq_left hc] at hx; exact hx.1 .ne'
@@ -467,7 +467,7 @@ theorem integral_exp_mul_complex {c : ℂ} (hc : c ≠ 0) :
467
467
conv => congr
468
468
rw [← mul_div_cancel (Complex.exp (c * x)) hc]
469
469
apply ((Complex.hasDerivAt_exp _).comp x _).div_const c
470
- simpa only [mul_one] using ((hasDerivAt_id (x : ℂ)).const_mul _).comp_of_real
470
+ simpa only [mul_one] using ((hasDerivAt_id (x : ℂ)).const_mul _).comp_ofReal
471
471
rw [integral_deriv_eq_sub' _ (funext fun x => (D x).deriv) fun x _ => (D x).differentiableAt]
472
472
· ring
473
473
· apply Continuous.continuousOn; continuity
@@ -524,7 +524,7 @@ theorem integral_cos_mul_complex {z : ℂ} (hz : z ≠ 0) (a b : ℝ) :
524
524
have a := Complex.hasDerivAt_sin (↑x * z)
525
525
have b : HasDerivAt (fun y => y * z : ℂ → ℂ) z ↑x := hasDerivAt_mul_const _
526
526
have c : HasDerivAt (fun y : ℂ => Complex.sin (y * z)) _ ↑x := HasDerivAt.comp (𝕜 := ℂ) x a b
527
- have d := HasDerivAt.comp_of_real (c.div_const z)
527
+ have d := HasDerivAt.comp_ofReal (c.div_const z)
528
528
simp only [mul_comm] at d
529
529
convert d using 1
530
530
conv_rhs => arg 1 ; rw [mul_comm]
@@ -575,7 +575,7 @@ theorem integral_mul_cpow_one_add_sq {t : ℂ} (ht : t ≠ -1) :
575
575
(Or.inl hz)).div_const (2 * (t + 1 )) using 1
576
576
field_simp
577
577
ring
578
- convert (HasDerivAt.comp (↑x) (g _) f).comp_of_real using 1
578
+ convert (HasDerivAt.comp (↑x) (g _) f).comp_ofReal using 1
579
579
· simp
580
580
· field_simp; ring
581
581
· exact_mod_cast add_pos_of_pos_of_nonneg zero_lt_one (sq_nonneg x)
@@ -595,7 +595,7 @@ theorem integral_mul_rpow_one_add_sq {t : ℝ} (ht : t ≠ -1) :
595
595
have : ∀ x s : ℝ, (((↑1 + x ^ 2 ) ^ s : ℝ) : ℂ) = (1 + (x : ℂ) ^ 2 ) ^ (s:ℂ) := by
596
596
intro x s
597
597
norm_cast
598
- rw [of_real_cpow , ofReal_add, ofReal_pow, ofReal_one]
598
+ rw [ofReal_cpow , ofReal_add, ofReal_pow, ofReal_one]
599
599
exact add_nonneg zero_le_one (sq_nonneg x)
600
600
rw [← ofReal_inj]
601
601
convert integral_mul_cpow_one_add_sq (_ : (t : ℂ) ≠ -1 )
0 commit comments