@@ -3,10 +3,8 @@ Copyright (c) 2021 Rémy Degenne. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Rémy Degenne, Sébastien Gouëzel
5
5
-/
6
- import Mathlib.Analysis.NormedSpace.BoundedLinearMaps
7
- import Mathlib.MeasureTheory.Measure.WithDensity
6
+ import Mathlib.Analysis.NormedSpace.Basic
8
7
import Mathlib.MeasureTheory.Function.SimpleFuncDense
9
- import Mathlib.Topology.Algebra.Module.FiniteDimension
10
8
11
9
#align_import measure_theory.function.strongly_measurable.basic from "leanprover-community/mathlib" @"3b52265189f3fb43aa631edffce5d060fafaf82f"
12
10
@@ -1642,11 +1640,6 @@ theorem comp_quasiMeasurePreserving {γ : Type*} {_ : MeasurableSpace γ} {_ : M
1642
1640
(hg.mono_ac hf.absolutelyContinuous).comp_measurable hf.measurable
1643
1641
#align measure_theory.ae_strongly_measurable.comp_quasi_measure_preserving MeasureTheory.AEStronglyMeasurable.comp_quasiMeasurePreserving
1644
1642
1645
- theorem comp_measurePreserving {γ : Type *} {_ : MeasurableSpace γ} {_ : MeasurableSpace α}
1646
- {f : γ → α} {μ : Measure γ} {ν : Measure α} (hg : AEStronglyMeasurable g ν)
1647
- (hf : MeasurePreserving f μ ν) : AEStronglyMeasurable (g ∘ f) μ :=
1648
- hg.comp_quasiMeasurePreserving hf.quasiMeasurePreserving
1649
-
1650
1643
theorem isSeparable_ae_range (hf : AEStronglyMeasurable f μ) :
1651
1644
∃ t : Set β, IsSeparable t ∧ ∀ᵐ x ∂μ, f x ∈ t := by
1652
1645
refine ⟨range (hf.mk f), hf.stronglyMeasurable_mk.isSeparable_range, ?_⟩
@@ -1708,13 +1701,6 @@ theorem _root_.Embedding.aestronglyMeasurable_comp_iff [PseudoMetrizableSpace β
1708
1701
exact ⟨g ⁻¹' t, hg.isSeparable_preimage ht, h't⟩
1709
1702
#align embedding.ae_strongly_measurable_comp_iff Embedding.aestronglyMeasurable_comp_iff
1710
1703
1711
- theorem _root_.MeasureTheory.MeasurePreserving.aestronglyMeasurable_comp_iff {β : Type *}
1712
- {f : α → β} {mα : MeasurableSpace α} {μa : Measure α} {mβ : MeasurableSpace β} {μb : Measure β}
1713
- (hf : MeasurePreserving f μa μb) (h₂ : MeasurableEmbedding f) {g : β → γ} :
1714
- AEStronglyMeasurable (g ∘ f) μa ↔ AEStronglyMeasurable g μb := by
1715
- rw [← hf.map_eq, h₂.aestronglyMeasurable_map_iff]
1716
- #align measure_theory.measure_preserving.ae_strongly_measurable_comp_iff MeasureTheory.MeasurePreserving.aestronglyMeasurable_comp_iff
1717
-
1718
1704
/-- An almost everywhere sequential limit of almost everywhere strongly measurable functions is
1719
1705
almost everywhere strongly measurable. -/
1720
1706
theorem _root_.aestronglyMeasurable_of_tendsto_ae {ι : Type *} [PseudoMetrizableSpace β]
@@ -1845,18 +1831,6 @@ theorem smul_measure {R : Type*} [Monoid R] [DistribMulAction R ℝ≥0∞] [IsS
1845
1831
⟨h.mk f, h.stronglyMeasurable_mk, ae_smul_measure h.ae_eq_mk c⟩
1846
1832
#align measure_theory.ae_strongly_measurable.smul_measure MeasureTheory.AEStronglyMeasurable.smul_measure
1847
1833
1848
- section NormedSpace
1849
-
1850
- variable {𝕜 : Type *} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜]
1851
- variable {E : Type *} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
1852
-
1853
- theorem _root_.aestronglyMeasurable_smul_const_iff {f : α → 𝕜} {c : E} (hc : c ≠ 0 ) :
1854
- AEStronglyMeasurable (fun x => f x • c) μ ↔ AEStronglyMeasurable f μ :=
1855
- (closedEmbedding_smul_left hc).toEmbedding.aestronglyMeasurable_comp_iff
1856
- #align ae_strongly_measurable_smul_const_iff aestronglyMeasurable_smul_const_iff
1857
-
1858
- end NormedSpace
1859
-
1860
1834
section MulAction
1861
1835
1862
1836
variable {M G G₀ : Type *}
@@ -1882,59 +1856,6 @@ theorem _root_.aestronglyMeasurable_const_smul_iff₀ {c : G₀} (hc : c ≠ 0)
1882
1856
1883
1857
end MulAction
1884
1858
1885
- section ContinuousLinearMapNontriviallyNormedField
1886
-
1887
- variable {𝕜 : Type *} [NontriviallyNormedField 𝕜]
1888
- variable {E : Type *} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
1889
- variable {F : Type *} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
1890
- variable {G : Type *} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
1891
-
1892
- theorem _root_.StronglyMeasurable.apply_continuousLinearMap {_m : MeasurableSpace α}
1893
- {φ : α → F →L[𝕜] E}
1894
- (hφ : StronglyMeasurable φ) (v : F) : StronglyMeasurable fun a => φ a v :=
1895
- (ContinuousLinearMap.apply 𝕜 E v).continuous.comp_stronglyMeasurable hφ
1896
- #align strongly_measurable.apply_continuous_linear_map StronglyMeasurable.apply_continuousLinearMap
1897
-
1898
- @[measurability]
1899
- theorem apply_continuousLinearMap {φ : α → F →L[𝕜] E} (hφ : AEStronglyMeasurable φ μ) (v : F) :
1900
- AEStronglyMeasurable (fun a => φ a v) μ :=
1901
- (ContinuousLinearMap.apply 𝕜 E v).continuous.comp_aestronglyMeasurable hφ
1902
- #align measure_theory.ae_strongly_measurable.apply_continuous_linear_map MeasureTheory.AEStronglyMeasurable.apply_continuousLinearMap
1903
-
1904
- theorem _root_.ContinuousLinearMap.aestronglyMeasurable_comp₂ (L : E →L[𝕜] F →L[𝕜] G) {f : α → E}
1905
- {g : α → F} (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
1906
- AEStronglyMeasurable (fun x => L (f x) (g x)) μ :=
1907
- L.continuous₂.comp_aestronglyMeasurable₂ hf hg
1908
- #align continuous_linear_map.ae_strongly_measurable_comp₂ ContinuousLinearMap.aestronglyMeasurable_comp₂
1909
-
1910
- end ContinuousLinearMapNontriviallyNormedField
1911
-
1912
- theorem _root_.aestronglyMeasurable_withDensity_iff {E : Type *} [NormedAddCommGroup E]
1913
- [NormedSpace ℝ E] {f : α → ℝ≥0 } (hf : Measurable f) {g : α → E} :
1914
- AEStronglyMeasurable g (μ.withDensity fun x => (f x : ℝ≥0 ∞)) ↔
1915
- AEStronglyMeasurable (fun x => (f x : ℝ) • g x) μ := by
1916
- constructor
1917
- · rintro ⟨g', g'meas, hg'⟩
1918
- have A : MeasurableSet { x : α | f x ≠ 0 } := (hf (measurableSet_singleton 0 )).compl
1919
- refine ⟨fun x => (f x : ℝ) • g' x, hf.coe_nnreal_real.stronglyMeasurable.smul g'meas, ?_⟩
1920
- apply @ae_of_ae_restrict_of_ae_restrict_compl _ _ _ { x | f x ≠ 0 }
1921
- · rw [EventuallyEq, ae_withDensity_iff hf.coe_nnreal_ennreal] at hg'
1922
- rw [ae_restrict_iff' A]
1923
- filter_upwards [hg'] with a ha h'a
1924
- have : (f a : ℝ≥0 ∞) ≠ 0 := by simpa only [Ne, ENNReal.coe_eq_zero] using h'a
1925
- rw [ha this]
1926
- · filter_upwards [ae_restrict_mem A.compl] with x hx
1927
- simp only [Classical.not_not, mem_setOf_eq, mem_compl_iff] at hx
1928
- simp [hx]
1929
- · rintro ⟨g', g'meas, hg'⟩
1930
- refine ⟨fun x => (f x : ℝ)⁻¹ • g' x, hf.coe_nnreal_real.inv.stronglyMeasurable.smul g'meas, ?_⟩
1931
- rw [EventuallyEq, ae_withDensity_iff hf.coe_nnreal_ennreal]
1932
- filter_upwards [hg'] with x hx h'x
1933
- rw [← hx, smul_smul, _root_.inv_mul_cancel, one_smul]
1934
- simp only [Ne, ENNReal.coe_eq_zero] at h'x
1935
- simpa only [NNReal.coe_eq_zero, Ne] using h'x
1936
- #align ae_strongly_measurable_with_density_iff aestronglyMeasurable_withDensity_iff
1937
-
1938
1859
end AEStronglyMeasurable
1939
1860
1940
1861
/-! ## Almost everywhere finitely strongly measurable functions -/
0 commit comments