@@ -793,7 +793,7 @@ end Zero
793
793
794
794
/-- `toIcoMod` as an equiv from the quotient. -/
795
795
@[simps symm_apply]
796
- def quotientAddGroup .equivIcoMod (a : α) : α ⧸ AddSubgroup.zmultiples p ≃ Set.Ico a (a + p) where
796
+ def QuotientAddGroup .equivIcoMod (a : α) : α ⧸ AddSubgroup.zmultiples p ≃ Set.Ico a (a + p) where
797
797
toFun b :=
798
798
⟨(toIcoMod_periodic hp a).lift b, QuotientAddGroup.induction_on' b <| toIcoMod_mem_Ico hp a⟩
799
799
invFun := (↑)
@@ -803,23 +803,23 @@ def quotientAddGroup.equivIcoMod (a : α) : α ⧸ AddSubgroup.zmultiples p ≃
803
803
dsimp
804
804
rw [QuotientAddGroup.eq_iff_sub_mem, toIcoMod_sub_self]
805
805
apply AddSubgroup.zsmul_mem_zmultiples
806
- #align quotient_add_group.equiv_Ico_mod quotientAddGroup .equivIcoMod
806
+ #align quotient_add_group.equiv_Ico_mod QuotientAddGroup .equivIcoMod
807
807
808
808
@[simp]
809
- theorem quotientAddGroup .equivIcoMod_coe (a b : α) :
810
- quotientAddGroup .equivIcoMod hp a ↑b = ⟨toIcoMod hp a b, toIcoMod_mem_Ico hp a _⟩ :=
809
+ theorem QuotientAddGroup .equivIcoMod_coe (a b : α) :
810
+ QuotientAddGroup .equivIcoMod hp a ↑b = ⟨toIcoMod hp a b, toIcoMod_mem_Ico hp a _⟩ :=
811
811
rfl
812
- #align quotient_add_group.equiv_Ico_mod_coe quotientAddGroup .equivIcoMod_coe
812
+ #align quotient_add_group.equiv_Ico_mod_coe QuotientAddGroup .equivIcoMod_coe
813
813
814
814
@[simp]
815
- theorem quotientAddGroup .equivIcoMod_zero (a : α) :
816
- quotientAddGroup .equivIcoMod hp a 0 = ⟨toIcoMod hp a 0 , toIcoMod_mem_Ico hp a _⟩ :=
815
+ theorem QuotientAddGroup .equivIcoMod_zero (a : α) :
816
+ QuotientAddGroup .equivIcoMod hp a 0 = ⟨toIcoMod hp a 0 , toIcoMod_mem_Ico hp a _⟩ :=
817
817
rfl
818
- #align quotient_add_group.equiv_Ico_mod_zero quotientAddGroup .equivIcoMod_zero
818
+ #align quotient_add_group.equiv_Ico_mod_zero QuotientAddGroup .equivIcoMod_zero
819
819
820
820
/-- `toIocMod` as an equiv from the quotient. -/
821
821
@[simps symm_apply]
822
- def quotientAddGroup .equivIocMod (a : α) : α ⧸ AddSubgroup.zmultiples p ≃ Set.Ioc a (a + p) where
822
+ def QuotientAddGroup .equivIocMod (a : α) : α ⧸ AddSubgroup.zmultiples p ≃ Set.Ioc a (a + p) where
823
823
toFun b :=
824
824
⟨(toIocMod_periodic hp a).lift b, QuotientAddGroup.induction_on' b <| toIocMod_mem_Ioc hp a⟩
825
825
invFun := (↑)
@@ -829,19 +829,19 @@ def quotientAddGroup.equivIocMod (a : α) : α ⧸ AddSubgroup.zmultiples p ≃
829
829
dsimp
830
830
rw [QuotientAddGroup.eq_iff_sub_mem, toIocMod_sub_self]
831
831
apply AddSubgroup.zsmul_mem_zmultiples
832
- #align quotient_add_group.equiv_Ioc_mod quotientAddGroup .equivIocMod
832
+ #align quotient_add_group.equiv_Ioc_mod QuotientAddGroup .equivIocMod
833
833
834
834
@[simp]
835
- theorem quotientAddGroup .equivIocMod_coe (a b : α) :
836
- quotientAddGroup .equivIocMod hp a ↑b = ⟨toIocMod hp a b, toIocMod_mem_Ioc hp a _⟩ :=
835
+ theorem QuotientAddGroup .equivIocMod_coe (a b : α) :
836
+ QuotientAddGroup .equivIocMod hp a ↑b = ⟨toIocMod hp a b, toIocMod_mem_Ioc hp a _⟩ :=
837
837
rfl
838
- #align quotient_add_group.equiv_Ioc_mod_coe quotientAddGroup .equivIocMod_coe
838
+ #align quotient_add_group.equiv_Ioc_mod_coe QuotientAddGroup .equivIocMod_coe
839
839
840
840
@[simp]
841
- theorem quotientAddGroup .equivIocMod_zero (a : α) :
842
- quotientAddGroup .equivIocMod hp a 0 = ⟨toIocMod hp a 0 , toIocMod_mem_Ioc hp a _⟩ :=
841
+ theorem QuotientAddGroup .equivIocMod_zero (a : α) :
842
+ QuotientAddGroup .equivIocMod hp a 0 = ⟨toIocMod hp a 0 , toIocMod_mem_Ioc hp a _⟩ :=
843
843
rfl
844
- #align quotient_add_group.equiv_Ioc_mod_zero quotientAddGroup .equivIocMod_zero
844
+ #align quotient_add_group.equiv_Ioc_mod_zero QuotientAddGroup .equivIocMod_zero
845
845
846
846
/-!
847
847
### The circular order structure on `α ⧸ AddSubgroup.zmultiples p`
@@ -921,7 +921,7 @@ private theorem toIxxMod_trans {x₁ x₂ x₃ x₄ : α}
921
921
· rw [not_le] at h₁₂₃ h₂₃₄⊢
922
922
exact (h₁₂₃.2 .trans_le (toIcoMod_le_toIocMod _ x₃ x₂)).trans h₂₃₄.2
923
923
924
- namespace quotientAddGroup
924
+ namespace QuotientAddGroup
925
925
926
926
variable [hp' : Fact (0 < p)]
927
927
@@ -932,14 +932,14 @@ theorem btw_coe_iff' {x₁ x₂ x₃ : α} :
932
932
Btw.btw (x₁ : α ⧸ AddSubgroup.zmultiples p) x₂ x₃ ↔
933
933
toIcoMod hp'.out 0 (x₂ - x₁) ≤ toIocMod hp'.out 0 (x₃ - x₁) :=
934
934
Iff.rfl
935
- #align quotient_add_group.btw_coe_iff' quotientAddGroup .btw_coe_iff'
935
+ #align quotient_add_group.btw_coe_iff' QuotientAddGroup .btw_coe_iff'
936
936
937
937
-- maybe harder to use than the primed one?
938
938
theorem btw_coe_iff {x₁ x₂ x₃ : α} :
939
939
Btw.btw (x₁ : α ⧸ AddSubgroup.zmultiples p) x₂ x₃ ↔
940
940
toIcoMod hp'.out x₁ x₂ ≤ toIocMod hp'.out x₁ x₃ :=
941
941
by rw [btw_coe_iff', toIocMod_sub_eq_sub, toIcoMod_sub_eq_sub, zero_add, sub_le_sub_iff_right]
942
- #align quotient_add_group.btw_coe_iff quotientAddGroup .btw_coe_iff
942
+ #align quotient_add_group.btw_coe_iff QuotientAddGroup .btw_coe_iff
943
943
944
944
instance circularPreorder : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) where
945
945
btw_refl x := show _ ≤ _ by simp [sub_self, hp'.out.le]
@@ -959,10 +959,10 @@ instance circularPreorder : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) w
959
959
induction x₄ using QuotientAddGroup.induction_on'
960
960
simp_rw [btw_coe_iff] at h₁₂₃ h₂₃₄⊢
961
961
apply toIxxMod_trans _ h₁₂₃ h₂₃₄
962
- #align quotient_add_group.circular_preorder quotientAddGroup .circularPreorder
962
+ #align quotient_add_group.circular_preorder QuotientAddGroup .circularPreorder
963
963
964
964
instance circularOrder : CircularOrder (α ⧸ AddSubgroup.zmultiples p) :=
965
- { quotientAddGroup .circularPreorder with
965
+ { QuotientAddGroup .circularPreorder with
966
966
btw_antisymm := fun {x₁ x₂ x₃} h₁₂₃ h₃₂₁ => by
967
967
induction x₁ using QuotientAddGroup.induction_on'
968
968
induction x₂ using QuotientAddGroup.induction_on'
@@ -977,9 +977,9 @@ instance circularOrder : CircularOrder (α ⧸ AddSubgroup.zmultiples p) :=
977
977
induction x₃ using QuotientAddGroup.induction_on'
978
978
simp_rw [btw_coe_iff]
979
979
apply toIxxMod_total }
980
- #align quotient_add_group.circular_order quotientAddGroup .circularOrder
980
+ #align quotient_add_group.circular_order QuotientAddGroup .circularOrder
981
981
982
- end quotientAddGroup
982
+ end QuotientAddGroup
983
983
984
984
end Circular
985
985
0 commit comments