@@ -176,12 +176,16 @@ theorem inv_comp_inv : Inv.inv ∘ Inv.inv = @id G :=
176
176
inv_involutive.comp_self
177
177
178
178
@[to_additive]
179
- theorem left_inverse_inv : LeftInverse (fun a : G => a⁻¹) fun a => a⁻¹ :=
179
+ theorem leftInverse_inv : LeftInverse (fun a : G => a⁻¹) fun a => a⁻¹ :=
180
180
inv_inv
181
+ #align left_inverse_inv leftInverse_inv
182
+ #align left_inverse_neg leftInverse_neg
181
183
182
184
@[to_additive]
183
- theorem right_inverse_inv : LeftInverse (fun a : G => a⁻¹) fun a => a⁻¹ :=
185
+ theorem rightInverse_inv : LeftInverse (fun a : G => a⁻¹) fun a => a⁻¹ :=
184
186
inv_inv
187
+ #align right_inverse_inv rightInverse_inv
188
+ #align right_inverse_neg rightInverse_neg
185
189
186
190
end HasInvolutiveInv
187
191
@@ -554,22 +558,30 @@ theorem eq_iff_eq_of_div_eq_div (H : a / b = c / d) : a = b ↔ c = d :=
554
558
by rw [← div_eq_one, H, div_eq_one]
555
559
556
560
@[to_additive]
557
- theorem left_inverse_div_mul_left (c : G) : Function.LeftInverse (fun x => x / c) fun x => x * c :=
561
+ theorem leftInverse_div_mul_left (c : G) : Function.LeftInverse (fun x => x / c) fun x => x * c :=
558
562
fun x => mul_div_cancel'' x c
563
+ #align left_inverse_div_mul_left leftInverse_div_mul_left
564
+ #align left_inverse_sub_add_left leftInverse_sub_add_left
559
565
560
566
@[to_additive]
561
- theorem left_inverse_mul_left_div (c : G) : Function.LeftInverse (fun x => x * c) fun x => x / c :=
567
+ theorem leftInverse_mul_left_div (c : G) : Function.LeftInverse (fun x => x * c) fun x => x / c :=
562
568
fun x => div_mul_cancel' x c
569
+ #align left_inverse_mul_left_div leftInverse_mul_left_div
570
+ #align left_inverse_add_left_sub leftInverse_add_left_sub
563
571
564
572
@[to_additive]
565
- theorem left_inverse_mul_right_inv_mul (c : G) :
573
+ theorem leftInverse_mul_right_inv_mul (c : G) :
566
574
Function.LeftInverse (fun x => c * x) fun x => c⁻¹ * x :=
567
575
fun x => mul_inv_cancel_left c x
576
+ #align left_inverse_mul_right_inv_mul leftInverse_mul_right_inv_mul
577
+ #align left_inverse_add_right_neg_add leftInverse_add_right_neg_add
568
578
569
579
@[to_additive]
570
- theorem left_inverse_inv_mul_mul_right (c : G) :
580
+ theorem leftInverse_inv_mul_mul_right (c : G) :
571
581
Function.LeftInverse (fun x => c⁻¹ * x) fun x => c * x :=
572
582
fun x => inv_mul_cancel_left c x
583
+ #align left_inverse_inv_mul_mul_right leftInverse_inv_mul_mul_right
584
+ #align left_inverse_neg_add_add_right leftInverse_neg_add_add_right
573
585
574
586
-- TODO @[ to_additive ]
575
587
theorem exists_npow_eq_one_of_zpow_eq_one {n : ℤ} (hn : n ≠ 0 ) {x : G} (h : x ^ n = 1 ) :
0 commit comments