@@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Yaël Dillies, Bhavik Mehta
5
5
-/
6
6
import Mathlib.Algebra.Algebra.Basic
7
- import Mathlib.Algebra.BigOperators.Order
8
7
import Mathlib.Algebra.Order.Nonneg.Field
9
8
import Mathlib.Algebra.Order.Nonneg.Floor
10
9
@@ -248,49 +247,6 @@ theorem coe_indicator (s : Set α) (f : α → ℚ≥0) (a : α) :
248
247
theorem coe_pow (q : ℚ≥0 ) (n : ℕ) : (↑(q ^ n) : ℚ) = (q : ℚ) ^ n :=
249
248
coeHom.map_pow _ _
250
249
#align nnrat.coe_pow NNRat.coe_pow
251
-
252
- @[norm_cast]
253
- theorem coe_list_sum (l : List ℚ≥0 ) : (l.sum : ℚ) = (l.map (↑)).sum :=
254
- coeHom.map_list_sum _
255
- #align nnrat.coe_list_sum NNRat.coe_list_sum
256
-
257
- @[norm_cast]
258
- theorem coe_list_prod (l : List ℚ≥0 ) : (l.prod : ℚ) = (l.map (↑)).prod :=
259
- coeHom.map_list_prod _
260
- #align nnrat.coe_list_prod NNRat.coe_list_prod
261
-
262
- @[norm_cast]
263
- theorem coe_multiset_sum (s : Multiset ℚ≥0 ) : (s.sum : ℚ) = (s.map (↑)).sum :=
264
- coeHom.map_multiset_sum _
265
- #align nnrat.coe_multiset_sum NNRat.coe_multiset_sum
266
-
267
- @[norm_cast]
268
- theorem coe_multiset_prod (s : Multiset ℚ≥0 ) : (s.prod : ℚ) = (s.map (↑)).prod :=
269
- coeHom.map_multiset_prod _
270
- #align nnrat.coe_multiset_prod NNRat.coe_multiset_prod
271
-
272
- @[norm_cast]
273
- theorem coe_sum {s : Finset α} {f : α → ℚ≥0 } : ↑(∑ a in s, f a) = ∑ a in s, (f a : ℚ) :=
274
- coeHom.map_sum _ _
275
- #align nnrat.coe_sum NNRat.coe_sum
276
-
277
- theorem toNNRat_sum_of_nonneg {s : Finset α} {f : α → ℚ} (hf : ∀ a, a ∈ s → 0 ≤ f a) :
278
- (∑ a in s, f a).toNNRat = ∑ a in s, (f a).toNNRat := by
279
- rw [← coe_inj, coe_sum, Rat.coe_toNNRat _ (Finset.sum_nonneg hf)]
280
- exact Finset.sum_congr rfl fun x hxs ↦ by rw [Rat.coe_toNNRat _ (hf x hxs)]
281
- #align nnrat.to_nnrat_sum_of_nonneg NNRat.toNNRat_sum_of_nonneg
282
-
283
- @[norm_cast]
284
- theorem coe_prod {s : Finset α} {f : α → ℚ≥0 } : ↑(∏ a in s, f a) = ∏ a in s, (f a : ℚ) :=
285
- coeHom.map_prod _ _
286
- #align nnrat.coe_prod NNRat.coe_prod
287
-
288
- theorem toNNRat_prod_of_nonneg {s : Finset α} {f : α → ℚ} (hf : ∀ a ∈ s, 0 ≤ f a) :
289
- (∏ a in s, f a).toNNRat = ∏ a in s, (f a).toNNRat := by
290
- rw [← coe_inj, coe_prod, Rat.coe_toNNRat _ (Finset.prod_nonneg hf)]
291
- exact Finset.prod_congr rfl fun x hxs ↦ by rw [Rat.coe_toNNRat _ (hf x hxs)]
292
- #align nnrat.to_nnrat_prod_of_nonneg NNRat.toNNRat_prod_of_nonneg
293
-
294
250
@[norm_cast]
295
251
theorem nsmul_coe (q : ℚ≥0 ) (n : ℕ) : ↑(n • q) = n • (q : ℚ) :=
296
252
coeHom.toAddMonoidHom.map_nsmul _ _
0 commit comments