@@ -224,26 +224,26 @@ theorem Fintype.prod_sum_type (f : α₁ ⊕ α₂ → M) :
224
224
∏ x, f x = (∏ a₁, f (Sum.inl a₁)) * ∏ a₂, f (Sum.inr a₂) :=
225
225
prod_disj_sum _ _ _
226
226
227
- @[to_additive (attr := simp) Fintype.sum_prod_type]
228
- theorem Fintype.prod_prod_type [CommMonoid γ] { f : α₁ × α₂ → γ} :
227
+ @[to_additive Fintype.sum_prod_type]
228
+ theorem Fintype.prod_prod_type [CommMonoid γ] ( f : α₁ × α₂ → γ) :
229
229
∏ x, f x = ∏ x, ∏ y, f (x, y) :=
230
- Finset.prod_product
230
+ Finset.prod_product ..
231
231
232
232
/-- An uncurried version of `Finset.prod_prod_type`. -/
233
233
@[to_additive Fintype.sum_prod_type' "An uncurried version of `Finset.sum_prod_type`"]
234
- theorem Fintype.prod_prod_type' [CommMonoid γ] { f : α₁ → α₂ → γ} :
234
+ theorem Fintype.prod_prod_type' [CommMonoid γ] ( f : α₁ → α₂ → γ) :
235
235
∏ x : α₁ × α₂, f x.1 x.2 = ∏ x, ∏ y, f x y :=
236
- Finset.prod_product'
236
+ Finset.prod_product' ..
237
237
238
238
@[to_additive Fintype.sum_prod_type_right]
239
- theorem Fintype.prod_prod_type_right [CommMonoid γ] { f : α₁ × α₂ → γ} :
239
+ theorem Fintype.prod_prod_type_right [CommMonoid γ] ( f : α₁ × α₂ → γ) :
240
240
∏ x, f x = ∏ y, ∏ x, f (x, y) :=
241
- Finset.prod_product_right
241
+ Finset.prod_product_right ..
242
242
243
243
/-- An uncurried version of `Finset.prod_prod_type_right`. -/
244
244
@[to_additive Fintype.sum_prod_type_right' "An uncurried version of `Finset.sum_prod_type_right`"]
245
- theorem Fintype.prod_prod_type_right' [CommMonoid γ] { f : α₁ → α₂ → γ} :
245
+ theorem Fintype.prod_prod_type_right' [CommMonoid γ] ( f : α₁ → α₂ → γ) :
246
246
∏ x : α₁ × α₂, f x.1 x.2 = ∏ y, ∏ x, f x y :=
247
- Finset.prod_product_right'
247
+ Finset.prod_product_right' ..
248
248
249
249
end
0 commit comments