|
| 1 | +/- |
| 2 | +Copyright (c) 2024 Tomáš Skřivan All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Tomáš Skřivan |
| 5 | +-/ |
| 6 | +import Mathlib.MeasureTheory.Measure.AEMeasurable |
| 7 | +import Mathlib.MeasureTheory.Constructions.Prod.Basic |
| 8 | +import Mathlib.MeasureTheory.Constructions.Pi |
| 9 | +import Mathlib.MeasureTheory.Measure.Haar.OfBasis |
| 10 | + |
| 11 | +import Mathlib.Tactic.FunProp |
| 12 | +import Mathlib.Tactic.FunProp.Measurable |
| 13 | + |
| 14 | +/-! |
| 15 | +## `fun_prop` minimal setup for AEMeasurable |
| 16 | +-/ |
| 17 | + |
| 18 | + |
| 19 | +section missing |
| 20 | + |
| 21 | +open MeasureTheory |
| 22 | + |
| 23 | +variable {ι α β γ δ R : Type*} {m0 : MeasurableSpace α} [MeasurableSpace β] [MeasurableSpace γ] |
| 24 | + [MeasurableSpace δ] {f g : α → β} {μ ν : Measure α} |
| 25 | + |
| 26 | +theorem AEMeasurable.comp_aemeasurable' {f : α → δ} {g : δ → β} (hg : AEMeasurable g (μ.map f)) |
| 27 | + (hf : AEMeasurable f μ) : AEMeasurable (fun x => g (f x)) μ := comp_aemeasurable hg hf |
| 28 | + |
| 29 | +end missing |
| 30 | + |
| 31 | +open Mathlib |
| 32 | + |
| 33 | +-- mark definition |
| 34 | +attribute [fun_prop] |
| 35 | + AEMeasurable |
| 36 | + |
| 37 | +-- lambda rules |
| 38 | +attribute [fun_prop] |
| 39 | + aemeasurable_id' |
| 40 | + aemeasurable_const |
| 41 | + AEMeasurable.comp_aemeasurable' |
| 42 | + -- Measurable.comp_aemeasurable' |
| 43 | + -- AEMeasurable_apply -- is this somewhere? |
| 44 | + -- AEMeasurable_pi -- is this somewhere? |
| 45 | + |
| 46 | +-- product |
| 47 | +attribute [fun_prop] |
| 48 | + AEMeasurable.prod_mk |
| 49 | + AEMeasurable.fst |
| 50 | + AEMeasurable.snd |
| 51 | + |
| 52 | +-- algebra |
| 53 | +attribute [fun_prop] |
| 54 | + AEMeasurable.add |
| 55 | + AEMeasurable.sub |
| 56 | + AEMeasurable.mul |
| 57 | + AEMeasurable.neg |
| 58 | + AEMeasurable.div |
| 59 | + AEMeasurable.inv |
| 60 | + AEMeasurable.smul |
| 61 | + |
| 62 | +-- transitions |
| 63 | +attribute [fun_prop] |
| 64 | + AEMeasurable.mono' |
| 65 | + Measurable.aemeasurable |
| 66 | + |
| 67 | + |
| 68 | +attribute [fun_prop] |
| 69 | + AEMeasurable.mono' |
| 70 | + Measurable.aemeasurable |
| 71 | + |
| 72 | + |
| 73 | +-- Notice that no theorems about measuability of log are used. It is infered from continuity. |
| 74 | +example : AEMeasurable (fun x => x * (Real.log x) ^ 2 - Real.exp x / x) := |
| 75 | + by fun_prop |
| 76 | + |
| 77 | +private noncomputable def S (a b c d : ℝ) : ℝ := |
| 78 | + a / (a + b + d) + b / (a + b + c) + |
| 79 | + c / (b + c + d) + d / (a + c + d) |
| 80 | + |
| 81 | +private noncomputable def T (t : ℝ) : ℝ := S 1 (1 - t) t (t * (1 - t)) |
| 82 | + |
| 83 | +example : AEMeasurable T := by |
| 84 | + unfold T S |
| 85 | + fun_prop |
0 commit comments