@@ -65,9 +65,9 @@ theorem derivWithin_of_bilinear
65
65
(hu : DifferentiableWithinAt π u s x) (hv : DifferentiableWithinAt π v s x) :
66
66
derivWithin (fun y => B (u y) (v y)) s x =
67
67
B (u x) (derivWithin v s x) + B (derivWithin u s x) (v x) := by
68
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
69
- Β· exact (B.hasDerivWithinAt_of_bilinear hu.hasDerivWithinAt hv.hasDerivWithinAt).derivWithin hxs
70
- Β· simp [derivWithin_zero_of_isolated hxs ]
68
+ by_cases hsx : UniqueDiffWithinAt π s x
69
+ Β· exact (B.hasDerivWithinAt_of_bilinear hu.hasDerivWithinAt hv.hasDerivWithinAt).derivWithin hsx
70
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
71
71
72
72
theorem deriv_of_bilinear (hu : DifferentiableAt π u x) (hv : DifferentiableAt π v x) :
73
73
deriv (fun y => B (u y) (v y)) x = B (u x) (deriv v x) + B (deriv u x) (v x) :=
@@ -99,9 +99,9 @@ nonrec theorem HasStrictDerivAt.smul (hc : HasStrictDerivAt c c' x) (hf : HasStr
99
99
theorem derivWithin_smul (hc : DifferentiableWithinAt π c s x)
100
100
(hf : DifferentiableWithinAt π f s x) :
101
101
derivWithin (fun y => c y β’ f y) s x = c x β’ derivWithin f s x + derivWithin c s x β’ f x := by
102
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
103
- Β· exact (hc.hasDerivWithinAt.smul hf.hasDerivWithinAt).derivWithin hxs
104
- Β· simp [derivWithin_zero_of_isolated hxs ]
102
+ by_cases hsx : UniqueDiffWithinAt π s x
103
+ Β· exact (hc.hasDerivWithinAt.smul hf.hasDerivWithinAt).derivWithin hsx
104
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
105
105
106
106
theorem deriv_smul (hc : DifferentiableAt π c x) (hf : DifferentiableAt π f x) :
107
107
deriv (fun y => c y β’ f y) x = c x β’ deriv f x + deriv c x β’ f x :=
@@ -124,9 +124,9 @@ theorem HasDerivAt.smul_const (hc : HasDerivAt c c' x) (f : F) :
124
124
125
125
theorem derivWithin_smul_const (hc : DifferentiableWithinAt π c s x) (f : F) :
126
126
derivWithin (fun y => c y β’ f) s x = derivWithin c s x β’ f := by
127
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
128
- Β· exact (hc.hasDerivWithinAt.smul_const f).derivWithin hxs
129
- Β· simp [derivWithin_zero_of_isolated hxs ]
127
+ by_cases hsx : UniqueDiffWithinAt π s x
128
+ Β· exact (hc.hasDerivWithinAt.smul_const f).derivWithin hsx
129
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
130
130
131
131
theorem deriv_smul_const (hc : DifferentiableAt π c x) (f : F) :
132
132
deriv (fun y => c y β’ f) x = deriv c x β’ f :=
@@ -156,9 +156,9 @@ nonrec theorem HasDerivAt.const_smul (c : R) (hf : HasDerivAt f f' x) :
156
156
157
157
theorem derivWithin_const_smul (c : R) (hf : DifferentiableWithinAt π f s x) :
158
158
derivWithin (fun y => c β’ f y) s x = c β’ derivWithin f s x := by
159
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
160
- Β· exact (hf.hasDerivWithinAt.const_smul c).derivWithin hxs
161
- Β· simp [derivWithin_zero_of_isolated hxs ]
159
+ by_cases hsx : UniqueDiffWithinAt π s x
160
+ Β· exact (hf.hasDerivWithinAt.const_smul c).derivWithin hsx
161
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
162
162
163
163
theorem deriv_const_smul (c : R) (hf : DifferentiableAt π f x) :
164
164
deriv (fun y => c β’ f y) x = c β’ deriv f x :=
@@ -213,9 +213,9 @@ theorem HasStrictDerivAt.mul (hc : HasStrictDerivAt c c' x) (hd : HasStrictDeriv
213
213
theorem derivWithin_mul (hc : DifferentiableWithinAt π c s x)
214
214
(hd : DifferentiableWithinAt π d s x) :
215
215
derivWithin (fun y => c y * d y) s x = derivWithin c s x * d x + c x * derivWithin d s x := by
216
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
217
- Β· exact (hc.hasDerivWithinAt.mul hd.hasDerivWithinAt).derivWithin hxs
218
- Β· simp [derivWithin_zero_of_isolated hxs ]
216
+ by_cases hsx : UniqueDiffWithinAt π s x
217
+ Β· exact (hc.hasDerivWithinAt.mul hd.hasDerivWithinAt).derivWithin hsx
218
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
219
219
220
220
@[simp]
221
221
theorem deriv_mul (hc : DifferentiableAt π c x) (hd : DifferentiableAt π d x) :
@@ -242,9 +242,9 @@ theorem HasStrictDerivAt.mul_const (hc : HasStrictDerivAt c c' x) (d : πΈ) :
242
242
243
243
theorem derivWithin_mul_const (hc : DifferentiableWithinAt π c s x) (d : πΈ) :
244
244
derivWithin (fun y => c y * d) s x = derivWithin c s x * d := by
245
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
246
- Β· exact (hc.hasDerivWithinAt.mul_const d).derivWithin hxs
247
- Β· simp [derivWithin_zero_of_isolated hxs ]
245
+ by_cases hsx : UniqueDiffWithinAt π s x
246
+ Β· exact (hc.hasDerivWithinAt.mul_const d).derivWithin hsx
247
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
248
248
249
249
lemma derivWithin_mul_const_field (u : π') :
250
250
derivWithin (fun y => v y * u) s x = derivWithin v s x * u := by
@@ -291,9 +291,9 @@ theorem HasStrictDerivAt.const_mul (c : πΈ) (hd : HasStrictDerivAt d d' x) :
291
291
292
292
theorem derivWithin_const_mul (c : πΈ) (hd : DifferentiableWithinAt π d s x) :
293
293
derivWithin (fun y => c * d y) s x = c * derivWithin d s x := by
294
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
295
- Β· exact (hd.hasDerivWithinAt.const_mul c).derivWithin hxs
296
- Β· simp [derivWithin_zero_of_isolated hxs ]
294
+ by_cases hsx : UniqueDiffWithinAt π s x
295
+ Β· exact (hd.hasDerivWithinAt.const_mul c).derivWithin hsx
296
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
297
297
298
298
lemma derivWithin_const_mul_field (u : π') :
299
299
derivWithin (fun y => u * v y) s x = u * derivWithin v s x := by
@@ -343,9 +343,9 @@ theorem derivWithin_finset_prod
343
343
(hf : β i β u, DifferentiableWithinAt π (f i) s x) :
344
344
derivWithin (β i β u, f i Β·) s x =
345
345
β i β u, (β j β u.erase i, f j x) β’ derivWithin (f i) s x := by
346
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
347
- Β· exact (HasDerivWithinAt.finset_prod fun i hi β¦ (hf i hi).hasDerivWithinAt).derivWithin hxs
348
- Β· simp [derivWithin_zero_of_isolated hxs ]
346
+ by_cases hsx : UniqueDiffWithinAt π s x
347
+ Β· exact (HasDerivWithinAt.finset_prod fun i hi β¦ (hf i hi).hasDerivWithinAt).derivWithin hsx
348
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
349
349
350
350
end HasDeriv
351
351
@@ -454,9 +454,9 @@ theorem derivWithin_clm_comp (hc : DifferentiableWithinAt π c s x)
454
454
(hd : DifferentiableWithinAt π d s x) :
455
455
derivWithin (fun y => (c y).comp (d y)) s x =
456
456
(derivWithin c s x).comp (d x) + (c x).comp (derivWithin d s x) := by
457
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
458
- Β· exact (hc.hasDerivWithinAt.clm_comp hd.hasDerivWithinAt).derivWithin hxs
459
- Β· simp [derivWithin_zero_of_isolated hxs ]
457
+ by_cases hsx : UniqueDiffWithinAt π s x
458
+ Β· exact (hc.hasDerivWithinAt.clm_comp hd.hasDerivWithinAt).derivWithin hsx
459
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
460
460
461
461
theorem deriv_clm_comp (hc : DifferentiableAt π c x) (hd : DifferentiableAt π d x) :
462
462
deriv (fun y => (c y).comp (d y)) x = (deriv c x).comp (d x) + (c x).comp (deriv d x) :=
@@ -484,9 +484,9 @@ theorem HasDerivAt.clm_apply (hc : HasDerivAt c c' x) (hu : HasDerivAt u u' x) :
484
484
theorem derivWithin_clm_apply (hc : DifferentiableWithinAt π c s x)
485
485
(hu : DifferentiableWithinAt π u s x) :
486
486
derivWithin (fun y => (c y) (u y)) s x = derivWithin c s x (u x) + c x (derivWithin u s x) := by
487
- rcases uniqueDiffWithinAt_or_nhdsWithin_eq_bot s x with hxs | hxs
488
- Β· exact (hc.hasDerivWithinAt.clm_apply hu.hasDerivWithinAt).derivWithin hxs
489
- Β· simp [derivWithin_zero_of_isolated hxs ]
487
+ by_cases hsx : UniqueDiffWithinAt π s x
488
+ Β· exact (hc.hasDerivWithinAt.clm_apply hu.hasDerivWithinAt).derivWithin hsx
489
+ Β· simp [derivWithin_zero_of_not_uniqueDiffWithinAt hsx ]
490
490
491
491
theorem deriv_clm_apply (hc : DifferentiableAt π c x) (hu : DifferentiableAt π u x) :
492
492
deriv (fun y => (c y) (u y)) x = deriv c x (u x) + c x (deriv u x) :=
0 commit comments