@@ -40,11 +40,9 @@ class Comon_Class (X : C) where
40
40
counit : X ⟶ 𝟙_ C
41
41
/-- The comultiplication morphism of a comonoid object. -/
42
42
comul : X ⟶ X ⊗ X
43
- /- For the names of the conditions below, the unprimed names are reserved for the version where
44
- the argument `X` is explicit. -/
45
- counit_comul' : comul ≫ counit ▷ X = (λ_ X).inv := by aesop_cat
46
- comul_counit' : comul ≫ X ◁ counit = (ρ_ X).inv := by aesop_cat
47
- comul_assoc' : comul ≫ X ◁ comul = comul ≫ (comul ▷ X) ≫ (α_ X X X).hom := by aesop_cat
43
+ counit_comul (X) : comul ≫ counit ▷ X = (λ_ X).inv := by aesop_cat
44
+ comul_counit (X) : comul ≫ X ◁ counit = (ρ_ X).inv := by aesop_cat
45
+ comul_assoc (X) : comul ≫ X ◁ comul = comul ≫ (comul ▷ X) ≫ (α_ X X X).hom := by aesop_cat
48
46
49
47
namespace Comon_Class
50
48
@@ -53,27 +51,15 @@ namespace Comon_Class
53
51
@[inherit_doc] scoped notation "ε" => Comon_Class.counit
54
52
@[inherit_doc] scoped notation "ε[" M"]" => Comon_Class.counit (X := M)
55
53
56
- /- The simp attribute is reserved for the unprimed versions. -/
57
- attribute [reassoc] counit_comul' comul_counit' comul_assoc'
58
-
59
- @[reassoc (attr := simp)]
60
- theorem counit_comul (X : C) [Comon_Class X] : Δ ≫ ε ▷ X = (λ_ X).inv := counit_comul'
61
-
62
- @[reassoc (attr := simp)]
63
- theorem comul_counit (X : C) [Comon_Class X] : Δ ≫ X ◁ ε = (ρ_ X).inv := comul_counit'
64
-
65
- @[reassoc (attr := simp)]
66
- theorem comul_assoc (X : C) [Comon_Class X] :
67
- Δ ≫ X ◁ Δ = Δ ≫ Δ ▷ X ≫ (α_ X X X).hom :=
68
- comul_assoc'
54
+ attribute [reassoc (attr := simp)] counit_comul comul_counit comul_assoc
69
55
70
56
@[simps]
71
57
instance (C : Type u₁) [Category.{v₁} C] [MonoidalCategory.{v₁} C] : Comon_Class (𝟙_ C) where
72
58
counit := 𝟙 _
73
59
comul := (λ_ _).inv
74
- counit_comul' := by monoidal_coherence
75
- comul_counit' := by monoidal_coherence
76
- comul_assoc' := by monoidal_coherence
60
+ counit_comul := by monoidal_coherence
61
+ comul_counit := by monoidal_coherence
62
+ comul_assoc := by monoidal_coherence
77
63
78
64
end Comon_Class
79
65
@@ -256,13 +242,13 @@ open Opposite
256
242
abbrev Comon_ToMon_OpOpObjMon (A : Comon_ C) : Mon_Class (op A.X) where
257
243
one := ε[A.X].op
258
244
mul := Δ[A.X].op
259
- one_mul' := by
245
+ one_mul := by
260
246
rw [← op_whiskerRight, ← op_comp, counit_comul]
261
247
rfl
262
- mul_one' := by
248
+ mul_one := by
263
249
rw [← op_whiskerLeft, ← op_comp, comul_counit]
264
250
rfl
265
- mul_assoc' := by
251
+ mul_assoc := by
266
252
rw [← op_inv_associator, ← op_whiskerRight, ← op_comp, ← op_whiskerLeft, ← op_comp,
267
253
comul_assoc_flip, op_comp, op_comp_assoc]
268
254
rfl
@@ -290,9 +276,9 @@ The contravariant functor turning comonoid objects into monoid objects in the op
290
276
abbrev Mon_OpOpToComonObjComon (A : Mon_ (Cᵒᵖ)) : Comon_Class (unop A.X) where
291
277
counit := η[A.X].unop
292
278
comul := μ[A.X].unop
293
- counit_comul' := by rw [← unop_whiskerRight, ← unop_comp, Mon_Class.one_mul]; rfl
294
- comul_counit' := by rw [← unop_whiskerLeft, ← unop_comp, Mon_Class.mul_one]; rfl
295
- comul_assoc' := by
279
+ counit_comul := by rw [← unop_whiskerRight, ← unop_comp, Mon_Class.one_mul]; rfl
280
+ comul_counit := by rw [← unop_whiskerLeft, ← unop_comp, Mon_Class.mul_one]; rfl
281
+ comul_assoc := by
296
282
rw [← unop_whiskerRight, ← unop_whiskerLeft, ← unop_comp_assoc, ← unop_comp,
297
283
Mon_Class.mul_assoc_flip]
298
284
rfl
@@ -401,13 +387,13 @@ abbrev obj.instComon_Class (A : C) [Comon_Class A] (F : C ⥤ D) [F.OplaxMonoida
401
387
Comon_Class (F.obj A) where
402
388
counit := F.map ε[A] ≫ η F
403
389
comul := F.map Δ[A] ≫ δ F _ _
404
- counit_comul' := by
390
+ counit_comul := by
405
391
simp_rw [comp_whiskerRight, Category.assoc, δ_natural_left_assoc, left_unitality,
406
392
← F.map_comp_assoc, counit_comul]
407
- comul_counit' := by
393
+ comul_counit := by
408
394
simp_rw [MonoidalCategory.whiskerLeft_comp, Category.assoc, δ_natural_right_assoc,
409
395
right_unitality, ← F.map_comp_assoc, comul_counit]
410
- comul_assoc' := by
396
+ comul_assoc := by
411
397
simp_rw [comp_whiskerRight, Category.assoc, δ_natural_left_assoc,
412
398
MonoidalCategory.whiskerLeft_comp, δ_natural_right_assoc,
413
399
← F.map_comp_assoc, comul_assoc, F.map_comp, Category.assoc, associativity]
0 commit comments