Skip to content

Commit a8ea88b

Browse files
committed
chore: unprime the Prop-valued fields of Mon_Class (#26102)
Now that we have syntax to make `X` explicit in them, there's really no point having the primed fields. From Toric
1 parent e4f5fce commit a8ea88b

File tree

15 files changed

+74
-130
lines changed

15 files changed

+74
-130
lines changed

Mathlib/Algebra/Category/CoalgCat/ComonEquivalence.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -44,9 +44,9 @@ variable {R : Type u} [CommRing R]
4444
noncomputable instance (X : CoalgCat R) : Comon_Class (ModuleCat.of R X) where
4545
counit := ModuleCat.ofHom Coalgebra.counit
4646
comul := ModuleCat.ofHom Coalgebra.comul
47-
counit_comul' := ModuleCat.hom_ext <| by simpa using Coalgebra.rTensor_counit_comp_comul
48-
comul_counit' := ModuleCat.hom_ext <| by simpa using Coalgebra.lTensor_counit_comp_comul
49-
comul_assoc' := ModuleCat.hom_ext <| by simp_rw [ModuleCat.of_coe]; exact Coalgebra.coassoc.symm
47+
counit_comul := ModuleCat.hom_ext <| by simpa using Coalgebra.rTensor_counit_comp_comul
48+
comul_counit := ModuleCat.hom_ext <| by simpa using Coalgebra.lTensor_counit_comp_comul
49+
comul_assoc := ModuleCat.hom_ext <| by simp_rw [ModuleCat.of_coe]; exact Coalgebra.coassoc.symm
5050

5151
/-- An `R`-coalgebra is a comonoid object in the category of `R`-modules. -/
5252
@[simps X]

Mathlib/CategoryTheory/Bicategory/Monad/Basic.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -77,16 +77,16 @@ def ofOplaxFromUnit (F : OplaxFunctor (LocallyDiscrete (Discrete Unit)) B) :
7777
Comonad (F.map (𝟙 ⟨⟨Unit.unit⟩⟩)) where
7878
comul := F.map₂ (ρ_ _).inv ≫ F.mapComp _ _
7979
counit := F.mapId _
80-
comul_assoc' := by
80+
comul_assoc := by
8181
simp only [tensorObj_def, MonoidalCategory.whiskerLeft_comp, whiskerLeft_def, Category.assoc,
8282
MonoidalCategory.comp_whiskerRight, whiskerRight_def, associator_def]
8383
rw [← F.mapComp_naturality_left_assoc, ← F.mapComp_naturality_right_assoc]
8484
simp only [whiskerLeft_rightUnitor_inv, PrelaxFunctor.map₂_comp, Category.assoc,
8585
OplaxFunctor.map₂_associator, whiskerRight_id, Iso.hom_inv_id_assoc]
86-
counit_comul' := by
86+
counit_comul := by
8787
simp only [tensorUnit_def, tensorObj_def, whiskerRight_def, Category.assoc, leftUnitor_def]
8888
rw [F.mapComp_id_left, unitors_equal, F.map₂_inv_hom_assoc]
89-
comul_counit' := by
89+
comul_counit := by
9090
simp only [tensorUnit_def, tensorObj_def, whiskerLeft_def, rightUnitor_def]
9191
rw [Category.assoc, F.mapComp_id_right, F.map₂_inv_hom_assoc]
9292

Mathlib/CategoryTheory/Monad/EquivMon.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ attribute [local instance] endofunctorMonoidalCategory
3939
instance (M : Monad C) : Mon_Class (M : C ⥤ C) where
4040
one := M.η
4141
mul := M.μ
42-
mul_assoc' := by ext; simp [M.assoc]
42+
mul_assoc := by ext; simp [M.assoc]
4343

4444
/-- To every `Monad C` we associated a monoid object in `C ⥤ C`. -/
4545
@[simps]

Mathlib/CategoryTheory/Monoidal/Bimon_.lean

Lines changed: 8 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -38,33 +38,14 @@ A bimonoid object in a braided category `C` is a object that is simultaneously m
3838
objects, and structure morphisms of them satisfy appropriate consistency conditions.
3939
-/
4040
class Bimon_Class (M : C) extends Mon_Class M, Comon_Class M where
41-
/- For the names of the conditions below, the unprimed names are reserved for the version where
42-
the argument `M` is explicit. -/
43-
mul_comul' : μ[M] ≫ Δ[M] = (Δ[M] ⊗ₘ Δ[M]) ≫ tensorμ M M M M ≫ (μ[M] ⊗ₘ μ[M]) := by aesop_cat
44-
one_comul' : η[M] ≫ Δ[M] = η[M ⊗ M] := by aesop_cat
45-
mul_counit' : μ[M] ≫ ε[M] = ε[M ⊗ M] := by aesop_cat
46-
one_counit' : η[M] ≫ ε[M] = 𝟙 (𝟙_ C) := by aesop_cat
41+
mul_comul (M) : μ[M] ≫ Δ[M] = (Δ[M] ⊗ₘ Δ[M]) ≫ tensorμ M M M M ≫ (μ[M] ⊗ₘ μ[M]) := by aesop_cat
42+
one_comul (M) : η[M] ≫ Δ[M] = η[M ⊗ M] := by aesop_cat
43+
mul_counit (M) : μ[M] ≫ ε[M] = ε[M ⊗ M] := by aesop_cat
44+
one_counit (M) : η[M] ≫ ε[M] = 𝟙 (𝟙_ C) := by aesop_cat
4745

4846
namespace Bimon_Class
4947

50-
/- The simp attribute is reserved for the unprimed versions. -/
51-
attribute [reassoc] mul_comul' one_comul' mul_counit' one_counit'
52-
53-
variable (M : C) [Bimon_Class M]
54-
55-
@[reassoc (attr := simp)]
56-
theorem mul_comul (M : C) [Bimon_Class M] :
57-
μ[M] ≫ Δ[M] = (Δ[M] ⊗ₘ Δ[M]) ≫ tensorμ M M M M ≫ (μ[M] ⊗ₘ μ[M]) :=
58-
mul_comul'
59-
60-
@[reassoc (attr := simp)]
61-
theorem one_comul (M : C) [Bimon_Class M] : η[M] ≫ Δ[M] = η[M ⊗ M] := one_comul'
62-
63-
@[reassoc (attr := simp)]
64-
theorem mul_counit (M : C) [Bimon_Class M] : μ[M] ≫ ε[M] = ε[M ⊗ M] := mul_counit'
65-
66-
@[reassoc (attr := simp)]
67-
theorem one_counit (M : C) [Bimon_Class M] : η[M] ≫ ε[M] = 𝟙 (𝟙_ C) := one_counit'
48+
attribute [reassoc (attr := simp)] mul_comul one_comul mul_counit one_counit
6849

6950
end Bimon_Class
7051

@@ -266,11 +247,11 @@ theorem Bimon_ClassAux_comul (M : Bimon_ C) :
266247
instance (M : Bimon_ C) : Bimon_Class M.X.X where
267248
counit := ε[M.X].hom
268249
comul := Δ[M.X].hom
269-
counit_comul' := by
250+
counit_comul := by
270251
rw [← Bimon_ClassAux_counit, ← Bimon_ClassAux_comul, Comon_Class.counit_comul]
271-
comul_counit' := by
252+
comul_counit := by
272253
rw [← Bimon_ClassAux_counit, ← Bimon_ClassAux_comul, Comon_Class.comul_counit]
273-
comul_assoc' := by
254+
comul_assoc := by
274255
simp_rw [← Bimon_ClassAux_comul, Comon_Class.comul_assoc]
275256

276257
attribute [local simp] Mon_Class.tensorObj.one_def in

Mathlib/CategoryTheory/Monoidal/Cartesian/Mon_.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -49,23 +49,23 @@ def Mon_Class.ofRepresentableBy (F : Cᵒᵖ ⥤ MonCat.{w}) (α : (F ⋙ forget
4949
Mon_Class X where
5050
one := α.homEquiv.symm 1
5151
mul := α.homEquiv.symm (α.homEquiv (fst X X) * α.homEquiv (snd X X))
52-
one_mul' := by
52+
one_mul := by
5353
apply α.homEquiv.injective
5454
simp only [α.homEquiv_comp, Equiv.apply_symm_apply]
5555
simp only [Functor.comp_map, ConcreteCategory.forget_map_eq_coe, map_mul]
5656
simp only [← ConcreteCategory.forget_map_eq_coe, ← Functor.comp_map, ← α.homEquiv_comp]
5757
simp only [whiskerRight_fst, whiskerRight_snd]
5858
simp only [α.homEquiv_comp, Equiv.apply_symm_apply]
5959
simp [leftUnitor_hom]
60-
mul_one' := by
60+
mul_one := by
6161
apply α.homEquiv.injective
6262
simp only [α.homEquiv_comp, Equiv.apply_symm_apply]
6363
simp only [Functor.comp_map, ConcreteCategory.forget_map_eq_coe, map_mul]
6464
simp only [← ConcreteCategory.forget_map_eq_coe, ← Functor.comp_map, ← α.homEquiv_comp]
6565
simp only [whiskerLeft_fst, whiskerLeft_snd]
6666
simp only [α.homEquiv_comp, Equiv.apply_symm_apply]
6767
simp [rightUnitor_hom]
68-
mul_assoc' := by
68+
mul_assoc := by
6969
apply α.homEquiv.injective
7070
simp only [α.homEquiv_comp, Equiv.apply_symm_apply]
7171
simp only [Functor.comp_map, ConcreteCategory.forget_map_eq_coe, map_mul]

Mathlib/CategoryTheory/Monoidal/CommGrp_.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -180,7 +180,7 @@ noncomputable def mapCommGrp : CommGrp_ C ⥤ CommGrp_ D where
180180
obj A :=
181181
{ F.mapGrp.obj A.toGrp_ with
182182
comm :=
183-
{ mul_comm' := by
183+
{ mul_comm := by
184184
dsimp
185185
rw [← Functor.LaxBraided.braided_assoc, ← Functor.map_comp, IsCommMon.mul_comm] } }
186186
map f := F.mapMon.map f

Mathlib/CategoryTheory/Monoidal/CommMon_.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -157,7 +157,7 @@ def mapCommMon : CommMon_ C ⥤ CommMon_ D where
157157
obj A :=
158158
{ F.mapMon.obj A.toMon_ with
159159
comm :=
160-
{ mul_comm' := by
160+
{ mul_comm := by
161161
dsimp
162162
rw [← Functor.LaxBraided.braided_assoc, ← Functor.map_comp, IsCommMon.mul_comm] } }
163163
map f := F.mapMon.map f

Mathlib/CategoryTheory/Monoidal/Comon_.lean

Lines changed: 16 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -40,11 +40,9 @@ class Comon_Class (X : C) where
4040
counit : X ⟶ 𝟙_ C
4141
/-- The comultiplication morphism of a comonoid object. -/
4242
comul : X ⟶ X ⊗ X
43-
/- For the names of the conditions below, the unprimed names are reserved for the version where
44-
the argument `X` is explicit. -/
45-
counit_comul' : comul ≫ counit ▷ X = (λ_ X).inv := by aesop_cat
46-
comul_counit' : comul ≫ X ◁ counit = (ρ_ X).inv := by aesop_cat
47-
comul_assoc' : comul ≫ X ◁ comul = comul ≫ (comul ▷ X) ≫ (α_ X X X).hom := by aesop_cat
43+
counit_comul (X) : comul ≫ counit ▷ X = (λ_ X).inv := by aesop_cat
44+
comul_counit (X) : comul ≫ X ◁ counit = (ρ_ X).inv := by aesop_cat
45+
comul_assoc (X) : comul ≫ X ◁ comul = comul ≫ (comul ▷ X) ≫ (α_ X X X).hom := by aesop_cat
4846

4947
namespace Comon_Class
5048

@@ -53,27 +51,15 @@ namespace Comon_Class
5351
@[inherit_doc] scoped notation "ε" => Comon_Class.counit
5452
@[inherit_doc] scoped notation "ε["M"]" => Comon_Class.counit (X := M)
5553

56-
/- The simp attribute is reserved for the unprimed versions. -/
57-
attribute [reassoc] counit_comul' comul_counit' comul_assoc'
58-
59-
@[reassoc (attr := simp)]
60-
theorem counit_comul (X : C) [Comon_Class X] : Δ ≫ ε ▷ X = (λ_ X).inv := counit_comul'
61-
62-
@[reassoc (attr := simp)]
63-
theorem comul_counit (X : C) [Comon_Class X] : Δ ≫ X ◁ ε = (ρ_ X).inv := comul_counit'
64-
65-
@[reassoc (attr := simp)]
66-
theorem comul_assoc (X : C) [Comon_Class X] :
67-
Δ ≫ X ◁ Δ = Δ ≫ Δ ▷ X ≫ (α_ X X X).hom :=
68-
comul_assoc'
54+
attribute [reassoc (attr := simp)] counit_comul comul_counit comul_assoc
6955

7056
@[simps]
7157
instance (C : Type u₁) [Category.{v₁} C] [MonoidalCategory.{v₁} C] : Comon_Class (𝟙_ C) where
7258
counit := 𝟙 _
7359
comul := (λ_ _).inv
74-
counit_comul' := by monoidal_coherence
75-
comul_counit' := by monoidal_coherence
76-
comul_assoc' := by monoidal_coherence
60+
counit_comul := by monoidal_coherence
61+
comul_counit := by monoidal_coherence
62+
comul_assoc := by monoidal_coherence
7763

7864
end Comon_Class
7965

@@ -256,13 +242,13 @@ open Opposite
256242
abbrev Comon_ToMon_OpOpObjMon (A : Comon_ C) : Mon_Class (op A.X) where
257243
one := ε[A.X].op
258244
mul := Δ[A.X].op
259-
one_mul' := by
245+
one_mul := by
260246
rw [← op_whiskerRight, ← op_comp, counit_comul]
261247
rfl
262-
mul_one' := by
248+
mul_one := by
263249
rw [← op_whiskerLeft, ← op_comp, comul_counit]
264250
rfl
265-
mul_assoc' := by
251+
mul_assoc := by
266252
rw [← op_inv_associator, ← op_whiskerRight, ← op_comp, ← op_whiskerLeft, ← op_comp,
267253
comul_assoc_flip, op_comp, op_comp_assoc]
268254
rfl
@@ -290,9 +276,9 @@ The contravariant functor turning comonoid objects into monoid objects in the op
290276
abbrev Mon_OpOpToComonObjComon (A : Mon_ (Cᵒᵖ)) : Comon_Class (unop A.X) where
291277
counit := η[A.X].unop
292278
comul := μ[A.X].unop
293-
counit_comul' := by rw [← unop_whiskerRight, ← unop_comp, Mon_Class.one_mul]; rfl
294-
comul_counit' := by rw [← unop_whiskerLeft, ← unop_comp, Mon_Class.mul_one]; rfl
295-
comul_assoc' := by
279+
counit_comul := by rw [← unop_whiskerRight, ← unop_comp, Mon_Class.one_mul]; rfl
280+
comul_counit := by rw [← unop_whiskerLeft, ← unop_comp, Mon_Class.mul_one]; rfl
281+
comul_assoc := by
296282
rw [← unop_whiskerRight, ← unop_whiskerLeft, ← unop_comp_assoc, ← unop_comp,
297283
Mon_Class.mul_assoc_flip]
298284
rfl
@@ -401,13 +387,13 @@ abbrev obj.instComon_Class (A : C) [Comon_Class A] (F : C ⥤ D) [F.OplaxMonoida
401387
Comon_Class (F.obj A) where
402388
counit := F.map ε[A] ≫ η F
403389
comul := F.map Δ[A] ≫ δ F _ _
404-
counit_comul' := by
390+
counit_comul := by
405391
simp_rw [comp_whiskerRight, Category.assoc, δ_natural_left_assoc, left_unitality,
406392
← F.map_comp_assoc, counit_comul]
407-
comul_counit' := by
393+
comul_counit := by
408394
simp_rw [MonoidalCategory.whiskerLeft_comp, Category.assoc, δ_natural_right_assoc,
409395
right_unitality, ← F.map_comp_assoc, comul_counit]
410-
comul_assoc' := by
396+
comul_assoc := by
411397
simp_rw [comp_whiskerRight, Category.assoc, δ_natural_left_assoc,
412398
MonoidalCategory.whiskerLeft_comp, δ_natural_right_assoc,
413399
← F.map_comp_assoc, comul_assoc, F.map_comp, Category.assoc, associativity]

Mathlib/CategoryTheory/Monoidal/Hopf_.lean

Lines changed: 3 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -32,26 +32,16 @@ A Hopf monoid in a braided category `C` is a bimonoid object in `C` equipped wit
3232
class Hopf_Class (X : C) extends Bimon_Class X where
3333
/-- The antipode is an endomorphism of the underlying object of the Hopf monoid. -/
3434
antipode : X ⟶ X
35-
/- For the names of the conditions below, the unprimed names are reserved for the version where
36-
the argument `X` is explicit. -/
37-
antipode_left' : Δ ≫ antipode ▷ X ≫ μ = ε ≫ η := by aesop_cat
38-
antipode_right' : Δ ≫ X ◁ antipode ≫ μ = ε ≫ η := by aesop_cat
35+
antipode_left (X) : Δ ≫ antipode ▷ X ≫ μ = ε ≫ η := by aesop_cat
36+
antipode_right (X) : Δ ≫ X ◁ antipode ≫ μ = ε ≫ η := by aesop_cat
3937

4038
namespace Hopf_Class
4139

4240
@[inherit_doc] scoped notation "𝒮" => Hopf_Class.antipode
4341
@[inherit_doc] scoped notation "𝒮["M"]" => Hopf_Class.antipode (X := M)
4442

45-
/- The simp attribute is reserved for the unprimed versions. -/
46-
attribute [reassoc] antipode_left' antipode_right'
43+
attribute [reassoc (attr := simp)] antipode_left antipode_right
4744

48-
/-- The object is provided as an explicit argument. -/
49-
@[reassoc (attr := simp)]
50-
theorem antipode_left (X : C) [Hopf_Class X] : Δ ≫ 𝒮 ▷ X ≫ μ = ε ≫ η := antipode_left'
51-
52-
/-- The object is provided as an explicit argument. -/
53-
@[reassoc (attr := simp)]
54-
theorem antipode_right (X : C) [Hopf_Class X] : Δ ≫ X ◁ 𝒮 ≫ μ = ε ≫ η := antipode_right'
5545

5646
end Hopf_Class
5747

Mathlib/CategoryTheory/Monoidal/Internal/FunctorCategory.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -47,9 +47,9 @@ def functorObjObj (A : C ⥤ D) [Mon_Class A] (X : C) : Mon_ D where
4747
mon :=
4848
{ one := η[A].app X
4949
mul := μ[A].app X
50-
one_mul' := congr_app (one_mul A) X
51-
mul_one' := congr_app (mul_one A) X
52-
mul_assoc' := congr_app (mul_assoc A) X }
50+
one_mul := congr_app (one_mul A) X
51+
mul_one := congr_app (mul_one A) X
52+
mul_assoc := congr_app (mul_assoc A) X }
5353

5454
/-- A monoid object in a functor category induces a functor to the category of monoid objects. -/
5555
@[simps]
@@ -136,9 +136,9 @@ def functorObjObj (A : C ⥤ D) [Comon_Class A] (X : C) : Comon_ D where
136136
comon :=
137137
{ counit := ε[A].app X
138138
comul := Δ[A].app X
139-
counit_comul' := congr_app (counit_comul A) X
140-
comul_counit' := congr_app (comul_counit A) X
141-
comul_assoc' := congr_app (comul_assoc A) X }
139+
counit_comul := congr_app (counit_comul A) X
140+
comul_counit := congr_app (comul_counit A) X
141+
comul_assoc := congr_app (comul_assoc A) X }
142142

143143
/--
144144
A comonoid object in a functor category induces a functor to the category of comonoid objects.
@@ -235,7 +235,7 @@ def functor : CommMon_ (C ⥤ D) ⥤ C ⥤ CommMon_ D where
235235
{ (monFunctorCategoryEquivalence C D).functor.obj A.toMon_ with
236236
obj := fun X =>
237237
{ ((monFunctorCategoryEquivalence C D).functor.obj A.toMon_).obj X with
238-
comm := { mul_comm' := congr_app (IsCommMon.mul_comm A.X) X } } }
238+
comm := { mul_comm := congr_app (IsCommMon.mul_comm A.X) X } } }
239239
map f := { app := fun X => ((monFunctorCategoryEquivalence C D).functor.map f).app X }
240240

241241
/-- Functor translating a functor into the category of commutative monoid objects
@@ -245,7 +245,7 @@ to a commutative monoid object in the functor category
245245
def inverse : (C ⥤ CommMon_ D) ⥤ CommMon_ (C ⥤ D) where
246246
obj F :=
247247
{ (monFunctorCategoryEquivalence C D).inverse.obj (F ⋙ CommMon_.forget₂Mon_ D) with
248-
comm := { mul_comm' := by ext X; exact IsCommMon.mul_comm (F.obj X).X } }
248+
comm := { mul_comm := by ext X; exact IsCommMon.mul_comm (F.obj X).X } }
249249
map α := (monFunctorCategoryEquivalence C D).inverse.map (whiskerRight α _)
250250

251251
/-- The unit for the equivalence `CommMon_ (C ⥤ D) ≌ C ⥤ CommMon_ D`.

0 commit comments

Comments
 (0)