File tree Expand file tree Collapse file tree 4 files changed +13
-4
lines changed Expand file tree Collapse file tree 4 files changed +13
-4
lines changed Original file line number Diff line number Diff line change @@ -654,6 +654,7 @@ theorem ofSet_symm (s : Set α) : (LocalEquiv.ofSet s).symm = LocalEquiv.ofSet s
654
654
655
655
/-- Composing two local equivs if the target of the first coincides with the source of the
656
656
second. -/
657
+ @[simps]
657
658
protected def trans' (e' : LocalEquiv β γ) (h : e.target = e'.source) : LocalEquiv α γ where
658
659
toFun := e' ∘ e
659
660
invFun := e.symm ∘ e'.symm
Original file line number Diff line number Diff line change @@ -319,10 +319,16 @@ theorem continuous_const_smul_iff₀ (hc : c ≠ 0) : (Continuous fun x => c •
319
319
320
320
/-- Scalar multiplication by a non-zero element of a group with zero acting on `α` is a
321
321
homeomorphism from `α` onto itself. -/
322
+ @[simps! (config := .asFn) apply]
322
323
protected def Homeomorph.smulOfNeZero (c : G₀) (hc : c ≠ 0 ) : α ≃ₜ α :=
323
324
Homeomorph.smul (Units.mk0 c hc)
324
325
#align homeomorph.smul_of_ne_zero Homeomorph.smulOfNeZero
325
326
327
+ @[simp]
328
+ theorem Homeomorph.smulOfNeZero_symm_apply {c : G₀} (hc : c ≠ 0 ) :
329
+ ⇑(Homeomorph.smulOfNeZero c hc).symm = (c⁻¹ • · : α → α) :=
330
+ rfl
331
+
326
332
theorem isOpenMap_smul₀ {c : G₀} (hc : c ≠ 0 ) : IsOpenMap fun x : α => c • x :=
327
333
(Homeomorph.smulOfNeZero c hc).isOpenMap
328
334
#align is_open_map_smul₀ isOpenMap_smul₀
Original file line number Diff line number Diff line change @@ -121,6 +121,9 @@ theorem trans_apply (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) (a : α) : h₁.
121
121
rfl
122
122
#align homeomorph.trans_apply Homeomorph.trans_apply
123
123
124
+ @[simp] theorem symm_trans_apply (f : α ≃ₜ β) (g : β ≃ₜ γ) (a : γ) :
125
+ (f.trans g).symm a = f.symm (g.symm a) := rfl
126
+
124
127
@[simp]
125
128
theorem homeomorph_mk_coe_symm (a : Equiv α β) (b c) :
126
129
((Homeomorph.mk a b c).symm : β → α) = a.symm :=
Original file line number Diff line number Diff line change @@ -411,10 +411,8 @@ theorem eventually_nhdsWithin (e : LocalHomeomorph α β) {x : α} (p : β → P
411
411
theorem eventually_nhdsWithin' (e : LocalHomeomorph α β) {x : α} (p : α → Prop ) {s : Set α}
412
412
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
413
413
rw [e.eventually_nhdsWithin _ hx]
414
- refine'
415
- eventually_congr
416
- ((eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy =>
417
- _)
414
+ refine eventually_congr <|
415
+ (eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
418
416
rw [hy]
419
417
#align local_homeomorph.eventually_nhds_within' LocalHomeomorph.eventually_nhdsWithin'
420
418
776
774
777
775
/-- Composition of two local homeomorphisms when the target of the first and the source of
778
776
the second coincide. -/
777
+ @[simps! apply symm_apply toLocalEquiv, simps! (config := .lemmasOnly) source target]
779
778
protected def trans' (h : e.target = e'.source) : LocalHomeomorph α γ where
780
779
toLocalEquiv := LocalEquiv.trans' e.toLocalEquiv e'.toLocalEquiv h
781
780
open_source := e.open_source
You can’t perform that action at this time.
0 commit comments