Skip to content

Commit aa43be2

Browse files
committed
feat: add some missing simp lemmas (#6028)
1 parent 33e6609 commit aa43be2

File tree

4 files changed

+13
-4
lines changed

4 files changed

+13
-4
lines changed

Mathlib/Logic/Equiv/LocalEquiv.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -654,6 +654,7 @@ theorem ofSet_symm (s : Set α) : (LocalEquiv.ofSet s).symm = LocalEquiv.ofSet s
654654

655655
/-- Composing two local equivs if the target of the first coincides with the source of the
656656
second. -/
657+
@[simps]
657658
protected def trans' (e' : LocalEquiv β γ) (h : e.target = e'.source) : LocalEquiv α γ where
658659
toFun := e' ∘ e
659660
invFun := e.symm ∘ e'.symm

Mathlib/Topology/Algebra/ConstMulAction.lean

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -319,10 +319,16 @@ theorem continuous_const_smul_iff₀ (hc : c ≠ 0) : (Continuous fun x => c •
319319

320320
/-- Scalar multiplication by a non-zero element of a group with zero acting on `α` is a
321321
homeomorphism from `α` onto itself. -/
322+
@[simps! (config := .asFn) apply]
322323
protected def Homeomorph.smulOfNeZero (c : G₀) (hc : c ≠ 0) : α ≃ₜ α :=
323324
Homeomorph.smul (Units.mk0 c hc)
324325
#align homeomorph.smul_of_ne_zero Homeomorph.smulOfNeZero
325326

327+
@[simp]
328+
theorem Homeomorph.smulOfNeZero_symm_apply {c : G₀} (hc : c ≠ 0) :
329+
⇑(Homeomorph.smulOfNeZero c hc).symm = (c⁻¹ • · : α → α) :=
330+
rfl
331+
326332
theorem isOpenMap_smul₀ {c : G₀} (hc : c ≠ 0) : IsOpenMap fun x : α => c • x :=
327333
(Homeomorph.smulOfNeZero c hc).isOpenMap
328334
#align is_open_map_smul₀ isOpenMap_smul₀

Mathlib/Topology/Homeomorph.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -121,6 +121,9 @@ theorem trans_apply (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) (a : α) : h₁.
121121
rfl
122122
#align homeomorph.trans_apply Homeomorph.trans_apply
123123

124+
@[simp] theorem symm_trans_apply (f : α ≃ₜ β) (g : β ≃ₜ γ) (a : γ) :
125+
(f.trans g).symm a = f.symm (g.symm a) := rfl
126+
124127
@[simp]
125128
theorem homeomorph_mk_coe_symm (a : Equiv α β) (b c) :
126129
((Homeomorph.mk a b c).symm : β → α) = a.symm :=

Mathlib/Topology/LocalHomeomorph.lean

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -411,10 +411,8 @@ theorem eventually_nhdsWithin (e : LocalHomeomorph α β) {x : α} (p : β → P
411411
theorem eventually_nhdsWithin' (e : LocalHomeomorph α β) {x : α} (p : α → Prop) {s : Set α}
412412
(hx : x ∈ e.source) : (∀ᶠ y in 𝓝[e.symm ⁻¹' s] e x, p (e.symm y)) ↔ ∀ᶠ x in 𝓝[s] x, p x := by
413413
rw [e.eventually_nhdsWithin _ hx]
414-
refine'
415-
eventually_congr
416-
((eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy =>
417-
_)
414+
refine eventually_congr <|
415+
(eventually_nhdsWithin_of_eventually_nhds <| e.eventually_left_inverse hx).mono fun y hy => ?_
418416
rw [hy]
419417
#align local_homeomorph.eventually_nhds_within' LocalHomeomorph.eventually_nhdsWithin'
420418

@@ -776,6 +774,7 @@ end
776774

777775
/-- Composition of two local homeomorphisms when the target of the first and the source of
778776
the second coincide. -/
777+
@[simps! apply symm_apply toLocalEquiv, simps! (config := .lemmasOnly) source target]
779778
protected def trans' (h : e.target = e'.source) : LocalHomeomorph α γ where
780779
toLocalEquiv := LocalEquiv.trans' e.toLocalEquiv e'.toLocalEquiv h
781780
open_source := e.open_source

0 commit comments

Comments
 (0)