Skip to content

Commit aa79ce0

Browse files
committed
chore(OrderOfElement,Sylow): Fintype -> Finite (#10550)
1 parent 765353a commit aa79ce0

File tree

2 files changed

+4
-5
lines changed

2 files changed

+4
-5
lines changed

Mathlib/GroupTheory/OrderOfElement.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1160,7 +1160,7 @@ section PowIsSubgroup
11601160

11611161
/-- A nonempty idempotent subset of a finite cancellative monoid is a submonoid -/
11621162
@[to_additive "A nonempty idempotent subset of a finite cancellative add monoid is a submonoid"]
1163-
def submonoidOfIdempotent {M : Type*} [LeftCancelMonoid M] [Fintype M] (S : Set M)
1163+
def submonoidOfIdempotent {M : Type*} [LeftCancelMonoid M] [Finite M] (S : Set M)
11641164
(hS1 : S.Nonempty) (hS2 : S * S = S) : Submonoid M :=
11651165
have pow_mem : ∀ a : M, a ∈ S → ∀ n : ℕ, a ^ (n + 1) ∈ S := fun a ha =>
11661166
Nat.rec (by rwa [Nat.zero_eq, zero_add, pow_one]) fun n ih =>
@@ -1176,7 +1176,7 @@ def submonoidOfIdempotent {M : Type*} [LeftCancelMonoid M] [Fintype M] (S : Set
11761176

11771177
/-- A nonempty idempotent subset of a finite group is a subgroup -/
11781178
@[to_additive "A nonempty idempotent subset of a finite add group is a subgroup"]
1179-
def subgroupOfIdempotent {G : Type*} [Group G] [Fintype G] (S : Set G) (hS1 : S.Nonempty)
1179+
def subgroupOfIdempotent {G : Type*} [Group G] [Finite G] (S : Set G) (hS1 : S.Nonempty)
11801180
(hS2 : S * S = S) : Subgroup G :=
11811181
{ submonoidOfIdempotent S hS1 hS2 with
11821182
carrier := S

Mathlib/GroupTheory/Sylow.lean

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -395,11 +395,11 @@ theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)]
395395
#align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem
396396

397397
/-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/
398-
noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)]
398+
noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Finite (Sylow p G)]
399399
(P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer :=
400400
calc
401401
Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm
402-
_ ≃ orbit G P := by rw [P.orbit_eq_top]
402+
_ ≃ orbit G P := Equiv.setCongr P.orbit_eq_top.symm
403403
_ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P)
404404
_ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer]
405405

@@ -854,7 +854,6 @@ noncomputable def directProductOfNormal [Fintype G]
854854
(Finset.prod_finset_coe (fun p => p ^ (card G).factorization p) _)
855855
_ = (card G).factorization.prod (· ^ ·) := rfl
856856
_ = card G := Nat.factorization_prod_pow_eq_self Fintype.card_ne_zero
857-
858857
#align sylow.direct_product_of_normal Sylow.directProductOfNormal
859858

860859
end Sylow

0 commit comments

Comments
 (0)