File tree Expand file tree Collapse file tree 2 files changed +4
-5
lines changed Expand file tree Collapse file tree 2 files changed +4
-5
lines changed Original file line number Diff line number Diff line change @@ -1160,7 +1160,7 @@ section PowIsSubgroup
1160
1160
1161
1161
/-- A nonempty idempotent subset of a finite cancellative monoid is a submonoid -/
1162
1162
@[to_additive "A nonempty idempotent subset of a finite cancellative add monoid is a submonoid"]
1163
- def submonoidOfIdempotent {M : Type *} [LeftCancelMonoid M] [Fintype M] (S : Set M)
1163
+ def submonoidOfIdempotent {M : Type *} [LeftCancelMonoid M] [Finite M] (S : Set M)
1164
1164
(hS1 : S.Nonempty) (hS2 : S * S = S) : Submonoid M :=
1165
1165
have pow_mem : ∀ a : M, a ∈ S → ∀ n : ℕ, a ^ (n + 1 ) ∈ S := fun a ha =>
1166
1166
Nat.rec (by rwa [Nat.zero_eq, zero_add, pow_one]) fun n ih =>
@@ -1176,7 +1176,7 @@ def submonoidOfIdempotent {M : Type*} [LeftCancelMonoid M] [Fintype M] (S : Set
1176
1176
1177
1177
/-- A nonempty idempotent subset of a finite group is a subgroup -/
1178
1178
@[to_additive "A nonempty idempotent subset of a finite add group is a subgroup"]
1179
- def subgroupOfIdempotent {G : Type *} [Group G] [Fintype G] (S : Set G) (hS1 : S.Nonempty)
1179
+ def subgroupOfIdempotent {G : Type *} [Group G] [Finite G] (S : Set G) (hS1 : S.Nonempty)
1180
1180
(hS2 : S * S = S) : Subgroup G :=
1181
1181
{ submonoidOfIdempotent S hS1 hS2 with
1182
1182
carrier := S
Original file line number Diff line number Diff line change @@ -395,11 +395,11 @@ theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)]
395
395
#align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem
396
396
397
397
/-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/
398
- noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)]
398
+ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Finite (Sylow p G)]
399
399
(P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer :=
400
400
calc
401
401
Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm
402
- _ ≃ orbit G P := by rw [ P.orbit_eq_top]
402
+ _ ≃ orbit G P := Equiv.setCongr P.orbit_eq_top.symm
403
403
_ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P)
404
404
_ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer]
405
405
@@ -854,7 +854,6 @@ noncomputable def directProductOfNormal [Fintype G]
854
854
(Finset.prod_finset_coe (fun p => p ^ (card G).factorization p) _)
855
855
_ = (card G).factorization.prod (· ^ ·) := rfl
856
856
_ = card G := Nat.factorization_prod_pow_eq_self Fintype.card_ne_zero
857
-
858
857
#align sylow.direct_product_of_normal Sylow.directProductOfNormal
859
858
860
859
end Sylow
You can’t perform that action at this time.
0 commit comments