@@ -79,21 +79,21 @@ theorem support_mul [Mul G] [DecidableEq G] (a b : MonoidAlgebra k G) :
79
79
Subset.trans support_sum <| biUnion_mono fun _a₂ _ => support_single_subset
80
80
#align monoid_algebra.support_mul MonoidAlgebra.support_mul
81
81
82
- theorem support_mul_single [RightCancelSemigroup G] (f : MonoidAlgebra k G) (r : k)
82
+ theorem support_mul_single [Mul G] [IsRightCancelMul G] (f : MonoidAlgebra k G) (r : k)
83
83
(hr : ∀ y, y * r = 0 ↔ y = 0 ) (x : G) :
84
84
(f * single x r).support = f.support.map (mulRightEmbedding x) := by
85
85
classical
86
86
ext
87
- simp only [support_mul_single_eq_image f hr (isRightRegular_of_rightCancelSemigroup x),
87
+ simp only [support_mul_single_eq_image f hr (IsRightRegular.all x),
88
88
mem_image, mem_map, mulRightEmbedding_apply]
89
89
#align monoid_algebra.support_mul_single MonoidAlgebra.support_mul_single
90
90
91
- theorem support_single_mul [LeftCancelSemigroup G] (f : MonoidAlgebra k G) (r : k)
91
+ theorem support_single_mul [Mul G] [IsLeftCancelMul G] (f : MonoidAlgebra k G) (r : k)
92
92
(hr : ∀ y, r * y = 0 ↔ y = 0 ) (x : G) :
93
93
(single x r * f : MonoidAlgebra k G).support = f.support.map (mulLeftEmbedding x) := by
94
94
classical
95
95
ext
96
- simp only [support_single_mul_eq_image f hr (isLeftRegular_of_leftCancelSemigroup x), mem_image,
96
+ simp only [support_single_mul_eq_image f hr (IsLeftRegular.all x), mem_image,
97
97
mem_map, mulLeftEmbedding_apply]
98
98
#align monoid_algebra.support_single_mul MonoidAlgebra.support_single_mul
99
99
@@ -122,16 +122,16 @@ theorem support_mul [DecidableEq G] [Add G] (a b : k[G]) :
122
122
@MonoidAlgebra.support_mul k (Multiplicative G) _ _ _ _ _
123
123
#align add_monoid_algebra.support_mul AddMonoidAlgebra.support_mul
124
124
125
- theorem support_mul_single [AddRightCancelSemigroup G] (f : k[G]) (r : k)
125
+ theorem support_mul_single [Add G] [IsRightCancelAdd G] (f : k[G]) (r : k)
126
126
(hr : ∀ y, y * r = 0 ↔ y = 0 ) (x : G) :
127
127
(f * single x r : k[G]).support = f.support.map (addRightEmbedding x) :=
128
- @ MonoidAlgebra.support_mul_single k ( Multiplicative G) _ _ _ _ hr _
128
+ MonoidAlgebra.support_mul_single (G := Multiplicative G) _ _ hr _
129
129
#align add_monoid_algebra.support_mul_single AddMonoidAlgebra.support_mul_single
130
130
131
- theorem support_single_mul [AddLeftCancelSemigroup G] (f : k[G]) (r : k)
131
+ theorem support_single_mul [Add G] [IsLeftCancelAdd G] (f : k[G]) (r : k)
132
132
(hr : ∀ y, r * y = 0 ↔ y = 0 ) (x : G) :
133
133
(single x r * f : k[G]).support = f.support.map (addLeftEmbedding x) :=
134
- @ MonoidAlgebra.support_single_mul k ( Multiplicative G) _ _ _ _ hr _
134
+ MonoidAlgebra.support_single_mul (G := Multiplicative G) _ _ hr _
135
135
#align add_monoid_algebra.support_single_mul AddMonoidAlgebra.support_single_mul
136
136
137
137
section Span
0 commit comments