Skip to content

Commit ab35957

Browse files
committed
chore: remove space after ⅟ (#26997)
This will change how the docs and infoview render, and the rules for the upcoming whitespace linter. Zulip thread: [#mathlib4 > Space after &#96;⅟ &#96; @ 💬](https://leanprover.zulipchat.com/#narrow/channel/287929-mathlib4/topic/Space.20after.20.60.E2.85.9F.20.60/near/528309060) Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
1 parent 305026f commit ab35957

File tree

40 files changed

+219
-219
lines changed

40 files changed

+219
-219
lines changed

Mathlib/Algebra/Group/Action/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ section Monoid
6868
variable [Monoid α] [MulAction α β] (c : α) (x y : β) [Invertible c]
6969

7070
@[simp] lemma invOf_smul_smul : ⅟c • c • x = x := inv_smul_smul (unitOfInvertible c) _
71-
@[simp] lemma smul_invOf_smul : c • (⅟ c • x) = x := smul_inv_smul (unitOfInvertible c) _
71+
@[simp] lemma smul_invOf_smul : c • (⅟c • x) = x := smul_inv_smul (unitOfInvertible c) _
7272

7373
variable {c x y}
7474

Mathlib/Algebra/Group/Invertible/Basic.lean

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ variable {α : Type u}
2222
@[simps]
2323
def unitOfInvertible [Monoid α] (a : α) [Invertible a] : αˣ where
2424
val := a
25-
inv := ⅟ a
25+
inv := ⅟a
2626
val_inv := by simp
2727
inv_val := by simp
2828

@@ -37,7 +37,7 @@ def Units.invertible [Monoid α] (u : αˣ) :
3737
mul_invOf_self := u.mul_inv
3838

3939
@[simp]
40-
theorem invOf_units [Monoid α] (u : αˣ) [Invertible (u : α)] : ⅟ (u : α) = ↑u⁻¹ :=
40+
theorem invOf_units [Monoid α] (u : αˣ) [Invertible (u : α)] : ⅟(u : α) = ↑u⁻¹ :=
4141
invOf_eq_right_inv u.mul_inv
4242

4343
theorem IsUnit.nonempty_invertible [Monoid α] {a : α} (h : IsUnit a) : Nonempty (Invertible a) :=
@@ -55,39 +55,39 @@ theorem nonempty_invertible_iff_isUnit [Monoid α] (a : α) : Nonempty (Invertib
5555
⟨Nonempty.rec <| @isUnit_of_invertible _ _ _, IsUnit.nonempty_invertible⟩
5656

5757
theorem Commute.invOf_right [Monoid α] {a b : α} [Invertible b] (h : Commute a b) :
58-
Commute a (⅟ b) :=
58+
Commute a (⅟b) :=
5959
calc
60-
a * ⅟ b = ⅟ b * (b * a * ⅟ b) := by simp [mul_assoc]
61-
_ = ⅟ b * (a * b * ⅟ b) := by rw [h.eq]
62-
_ = ⅟ b * a := by simp [mul_assoc]
60+
a * ⅟b = ⅟b * (b * a * ⅟b) := by simp [mul_assoc]
61+
_ = ⅟b * (a * b * ⅟b) := by rw [h.eq]
62+
_ = ⅟b * a := by simp [mul_assoc]
6363

6464
theorem Commute.invOf_left [Monoid α] {a b : α} [Invertible b] (h : Commute b a) :
65-
Commute (⅟ b) a :=
65+
Commute (⅟b) a :=
6666
calc
67-
b * a = ⅟ b * (a * b * ⅟ b) := by simp [mul_assoc]
68-
_ = ⅟ b * (b * a * ⅟ b) := by rw [h.eq]
69-
_ = a * ⅟ b := by simp [mul_assoc]
67+
⅟b * a = ⅟b * (a * b * ⅟b) := by simp [mul_assoc]
68+
_ = ⅟b * (b * a * ⅟b) := by rw [h.eq]
69+
_ = a * ⅟b := by simp [mul_assoc]
7070

71-
theorem commute_invOf {M : Type*} [One M] [Mul M] (m : M) [Invertible m] : Commute m (⅟ m) :=
71+
theorem commute_invOf {M : Type*} [One M] [Mul M] (m : M) [Invertible m] : Commute m (⅟m) :=
7272
calc
73-
m * ⅟ m = 1 := mul_invOf_self m
74-
_ = ⅟ m * m := (invOf_mul_self m).symm
73+
m * ⅟m = 1 := mul_invOf_self m
74+
_ = ⅟m * m := (invOf_mul_self m).symm
7575

7676
section Monoid
7777

7878
variable [Monoid α]
7979

8080
/-- This is the `Invertible` version of `Units.isUnit_units_mul` -/
8181
abbrev invertibleOfInvertibleMul (a b : α) [Invertible a] [Invertible (a * b)] : Invertible b where
82-
invOf := ⅟ (a * b) * a
82+
invOf := ⅟(a * b) * a
8383
invOf_mul_self := by rw [mul_assoc, invOf_mul_self]
8484
mul_invOf_self := by
8585
rw [← (isUnit_of_invertible a).mul_right_inj, ← mul_assoc, ← mul_assoc, mul_invOf_self, mul_one,
8686
one_mul]
8787

8888
/-- This is the `Invertible` version of `Units.isUnit_mul_units` -/
8989
abbrev invertibleOfMulInvertible (a b : α) [Invertible (a * b)] [Invertible b] : Invertible a where
90-
invOf := b * ⅟ (a * b)
90+
invOf := b * ⅟(a * b)
9191
invOf_mul_self := by
9292
rw [← (isUnit_of_invertible b).mul_left_inj, mul_assoc, mul_assoc, invOf_mul_self, mul_one,
9393
one_mul]
@@ -110,11 +110,11 @@ def Invertible.mulRight (a : α) {b : α} (_ : Invertible b) : Invertible a ≃
110110
right_inv _ := Subsingleton.elim _ _
111111

112112
instance invertiblePow (m : α) [Invertible m] (n : ℕ) : Invertible (m ^ n) where
113-
invOf := ⅟ m ^ n
113+
invOf := ⅟m ^ n
114114
invOf_mul_self := by rw [← (commute_invOf m).symm.mul_pow, invOf_mul_self, one_pow]
115115
mul_invOf_self := by rw [← (commute_invOf m).mul_pow, mul_invOf_self, one_pow]
116116

117-
lemma invOf_pow (m : α) [Invertible m] (n : ℕ) [Invertible (m ^ n)] : ⅟ (m ^ n) = ⅟ m ^ n :=
117+
lemma invOf_pow (m : α) [Invertible m] (n : ℕ) [Invertible (m ^ n)] : ⅟(m ^ n) = ⅟m ^ n :=
118118
@invertible_unique _ _ _ _ _ (invertiblePow m n) rfl
119119

120120
/-- If `x ^ n = 1` then `x` has an inverse, `x^(n - 1)`. -/
@@ -128,7 +128,7 @@ end Monoid
128128
def Invertible.map {R : Type*} {S : Type*} {F : Type*} [MulOneClass R] [MulOneClass S]
129129
[FunLike F R S] [MonoidHomClass F R S] (f : F) (r : R) [Invertible r] :
130130
Invertible (f r) where
131-
invOf := f (⅟ r)
131+
invOf := f (⅟r)
132132
invOf_mul_self := by rw [← map_mul, invOf_mul_self, map_one]
133133
mul_invOf_self := by rw [← map_mul, mul_invOf_self, map_one]
134134

@@ -137,7 +137,7 @@ before applying this lemma. -/
137137
theorem map_invOf {R : Type*} {S : Type*} {F : Type*} [MulOneClass R] [Monoid S]
138138
[FunLike F R S] [MonoidHomClass F R S] (f : F) (r : R)
139139
[Invertible r] [ifr : Invertible (f r)] :
140-
f (⅟ r) = ⅟ (f r) :=
140+
f (⅟r) = ⅟(f r) :=
141141
have h : ifr = Invertible.map f r := Subsingleton.elim _ _
142142
by subst h; rfl
143143

Mathlib/Algebra/Group/Invertible/Defs.lean

Lines changed: 25 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -90,60 +90,60 @@ class Invertible [Mul α] [One α] (a : α) : Type u where
9090

9191
/-- The inverse of an `Invertible` element -/
9292
-- This notation has the same precedence as `Inv.inv`.
93-
prefix:max "⅟ " => Invertible.invOf
93+
prefix:max "⅟" => Invertible.invOf
9494

9595
@[simp]
96-
theorem invOf_mul_self' [Mul α] [One α] (a : α) {_ : Invertible a} : ⅟ a * a = 1 :=
96+
theorem invOf_mul_self' [Mul α] [One α] (a : α) {_ : Invertible a} : ⅟a * a = 1 :=
9797
Invertible.invOf_mul_self
9898

99-
theorem invOf_mul_self [Mul α] [One α] (a : α) [Invertible a] : ⅟ a * a = 1 := invOf_mul_self' _
99+
theorem invOf_mul_self [Mul α] [One α] (a : α) [Invertible a] : ⅟a * a = 1 := invOf_mul_self' _
100100

101101
@[simp]
102-
theorem mul_invOf_self' [Mul α] [One α] (a : α) {_ : Invertible a} : a * ⅟ a = 1 :=
102+
theorem mul_invOf_self' [Mul α] [One α] (a : α) {_ : Invertible a} : a * ⅟a = 1 :=
103103
Invertible.mul_invOf_self
104104

105-
theorem mul_invOf_self [Mul α] [One α] (a : α) [Invertible a] : a * ⅟ a = 1 := mul_invOf_self' _
105+
theorem mul_invOf_self [Mul α] [One α] (a : α) [Invertible a] : a * ⅟a = 1 := mul_invOf_self' _
106106

107107
@[simp]
108-
theorem invOf_mul_cancel_left' [Monoid α] (a b : α) {_ : Invertible a} : ⅟ a * (a * b) = b := by
108+
theorem invOf_mul_cancel_left' [Monoid α] (a b : α) {_ : Invertible a} : ⅟a * (a * b) = b := by
109109
rw [← mul_assoc, invOf_mul_self, one_mul]
110110
example {G} [Group G] (a b : G) : a⁻¹ * (a * b) = b := inv_mul_cancel_left a b
111111

112-
theorem invOf_mul_cancel_left [Monoid α] (a b : α) [Invertible a] : ⅟ a * (a * b) = b :=
112+
theorem invOf_mul_cancel_left [Monoid α] (a b : α) [Invertible a] : ⅟a * (a * b) = b :=
113113
invOf_mul_cancel_left' _ _
114114

115115
@[simp]
116-
theorem mul_invOf_cancel_left' [Monoid α] (a b : α) {_ : Invertible a} : a * (⅟ a * b) = b := by
116+
theorem mul_invOf_cancel_left' [Monoid α] (a b : α) {_ : Invertible a} : a * (⅟a * b) = b := by
117117
rw [← mul_assoc, mul_invOf_self, one_mul]
118118
example {G} [Group G] (a b : G) : a * (a⁻¹ * b) = b := mul_inv_cancel_left a b
119119

120-
theorem mul_invOf_cancel_left [Monoid α] (a b : α) [Invertible a] : a * (⅟ a * b) = b :=
120+
theorem mul_invOf_cancel_left [Monoid α] (a b : α) [Invertible a] : a * (⅟a * b) = b :=
121121
mul_invOf_cancel_left' a b
122122

123123
@[simp]
124-
theorem invOf_mul_cancel_right' [Monoid α] (a b : α) {_ : Invertible b} : a * ⅟ b * b = a := by
124+
theorem invOf_mul_cancel_right' [Monoid α] (a b : α) {_ : Invertible b} : a * ⅟b * b = a := by
125125
simp [mul_assoc]
126126
example {G} [Group G] (a b : G) : a * b⁻¹ * b = a := inv_mul_cancel_right a b
127127

128-
theorem invOf_mul_cancel_right [Monoid α] (a b : α) [Invertible b] : a * ⅟ b * b = a :=
128+
theorem invOf_mul_cancel_right [Monoid α] (a b : α) [Invertible b] : a * ⅟b * b = a :=
129129
invOf_mul_cancel_right' _ _
130130

131131
@[simp]
132-
theorem mul_invOf_cancel_right' [Monoid α] (a b : α) {_ : Invertible b} : a * b * ⅟ b = a := by
132+
theorem mul_invOf_cancel_right' [Monoid α] (a b : α) {_ : Invertible b} : a * b * ⅟b = a := by
133133
simp [mul_assoc]
134134
example {G} [Group G] (a b : G) : a * b * b⁻¹ = a := mul_inv_cancel_right a b
135135

136-
theorem mul_invOf_cancel_right [Monoid α] (a b : α) [Invertible b] : a * b * ⅟ b = a :=
136+
theorem mul_invOf_cancel_right [Monoid α] (a b : α) [Invertible b] : a * b * ⅟b = a :=
137137
mul_invOf_cancel_right' _ _
138138

139-
theorem invOf_eq_right_inv [Monoid α] {a b : α} [Invertible a] (hac : a * b = 1) : ⅟ a = b :=
139+
theorem invOf_eq_right_inv [Monoid α] {a b : α} [Invertible a] (hac : a * b = 1) : ⅟a = b :=
140140
left_inv_eq_right_inv (invOf_mul_self _) hac
141141

142-
theorem invOf_eq_left_inv [Monoid α] {a b : α} [Invertible a] (hac : b * a = 1) : ⅟ a = b :=
142+
theorem invOf_eq_left_inv [Monoid α] {a b : α} [Invertible a] (hac : b * a = 1) : ⅟a = b :=
143143
(left_inv_eq_right_inv hac (mul_invOf_self _)).symm
144144

145145
theorem invertible_unique {α : Type u} [Monoid α] (a b : α) [Invertible a] [Invertible b]
146-
(h : a = b) : ⅟ a = ⅟ b := by
146+
(h : a = b) : ⅟a = ⅟b := by
147147
apply invOf_eq_right_inv
148148
rw [h, mul_invOf_self]
149149

@@ -159,7 +159,7 @@ theorem Invertible.congr [Monoid α] (a b : α) [Invertible a] [Invertible b] (h
159159

160160
/-- If `r` is invertible and `s = r` and `si = ⅟r`, then `s` is invertible with `⅟s = si`. -/
161161
def Invertible.copy' [MulOneClass α] {r : α} (hr : Invertible r) (s : α) (si : α) (hs : s = r)
162-
(hsi : si = ⅟ r) : Invertible s where
162+
(hsi : si = ⅟r) : Invertible s where
163163
invOf := si
164164
invOf_mul_self := by rw [hs, hsi, invOf_mul_self]
165165
mul_invOf_self := by rw [hs, hsi, mul_invOf_self]
@@ -174,38 +174,38 @@ def invertibleOfGroup [Group α] (a : α) : Invertible a :=
174174
⟨a⁻¹, inv_mul_cancel a, mul_inv_cancel a⟩
175175

176176
@[simp]
177-
theorem invOf_eq_group_inv [Group α] (a : α) [Invertible a] : ⅟ a = a⁻¹ :=
177+
theorem invOf_eq_group_inv [Group α] (a : α) [Invertible a] : ⅟a = a⁻¹ :=
178178
invOf_eq_right_inv (mul_inv_cancel a)
179179

180180
/-- `1` is the inverse of itself -/
181181
def invertibleOne [Monoid α] : Invertible (1 : α) :=
182182
1, mul_one _, one_mul _⟩
183183

184184
@[simp]
185-
theorem invOf_one' [Monoid α] {_ : Invertible (1 : α)} : ⅟ (1 : α) = 1 :=
185+
theorem invOf_one' [Monoid α] {_ : Invertible (1 : α)} : ⅟(1 : α) = 1 :=
186186
invOf_eq_right_inv (mul_one _)
187187

188-
theorem invOf_one [Monoid α] [Invertible (1 : α)] : ⅟ (1 : α) = 1 := invOf_one'
188+
theorem invOf_one [Monoid α] [Invertible (1 : α)] : ⅟(1 : α) = 1 := invOf_one'
189189

190190
/-- `a` is the inverse of `⅟a`. -/
191-
instance invertibleInvOf [One α] [Mul α] {a : α} [Invertible a] : Invertible (⅟ a) :=
191+
instance invertibleInvOf [One α] [Mul α] {a : α} [Invertible a] : Invertible (⅟a) :=
192192
⟨a, mul_invOf_self a, invOf_mul_self a⟩
193193

194194
@[simp]
195-
theorem invOf_invOf [Monoid α] (a : α) [Invertible a] [Invertible (⅟ a)] : ⅟ (⅟ a) = a :=
195+
theorem invOf_invOf [Monoid α] (a : α) [Invertible a] [Invertible (⅟a)] : ⅟(⅟a) = a :=
196196
invOf_eq_right_inv (invOf_mul_self _)
197197

198198
@[simp]
199-
theorem invOf_inj [Monoid α] {a b : α} [Invertible a] [Invertible b] : ⅟ a = ⅟ b ↔ a = b :=
199+
theorem invOf_inj [Monoid α] {a b : α} [Invertible a] [Invertible b] : ⅟a = ⅟b ↔ a = b :=
200200
⟨invertible_unique _ _, invertible_unique _ _⟩
201201

202202
/-- `⅟b * ⅟a` is the inverse of `a * b` -/
203203
def invertibleMul [Monoid α] (a b : α) [Invertible a] [Invertible b] : Invertible (a * b) :=
204-
⟨⅟ b * ⅟ a, by simp [← mul_assoc], by simp [← mul_assoc]⟩
204+
⟨⅟b * ⅟a, by simp [← mul_assoc], by simp [← mul_assoc]⟩
205205

206206
@[simp]
207207
theorem invOf_mul [Monoid α] (a b : α) [Invertible a] [Invertible b] [Invertible (a * b)] :
208-
(a * b) = ⅟ b * ⅟ a :=
208+
⅟(a * b) = ⅟b * ⅟a :=
209209
invOf_eq_right_inv (by simp [← mul_assoc])
210210

211211
/-- A copy of `invertibleMul` for dot notation. -/

Mathlib/Algebra/GroupWithZero/Invertible.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ theorem Invertible.ne_zero [MulZeroOneClass α] (a : α) [Nontrivial α] [Invert
2222
fun ha =>
2323
zero_ne_one <|
2424
calc
25-
0 = ⅟ a * a := by simp [ha]
25+
0 = ⅟a * a := by simp [ha]
2626
_ = 1 := invOf_mul_self
2727

2828
instance (priority := 100) Invertible.toNeZero [MulZeroOneClass α] [Nontrivial α] (a : α)
@@ -34,7 +34,7 @@ variable [MonoidWithZero α]
3434

3535
/-- A variant of `Ring.inverse_unit`. -/
3636
@[simp]
37-
theorem Ring.inverse_invertible (x : α) [Invertible x] : Ring.inverse x = ⅟ x :=
37+
theorem Ring.inverse_invertible (x : α) [Invertible x] : Ring.inverse x = ⅟x :=
3838
Ring.inverse_unit (unitOfInvertible _)
3939

4040
end MonoidWithZero
@@ -47,7 +47,7 @@ def invertibleOfNonzero {a : α} (h : a ≠ 0) : Invertible a :=
4747
⟨a⁻¹, inv_mul_cancel₀ h, mul_inv_cancel₀ h⟩
4848

4949
@[simp]
50-
theorem invOf_eq_inv (a : α) [Invertible a] : ⅟ a = a⁻¹ :=
50+
theorem invOf_eq_inv (a : α) [Invertible a] : ⅟a = a⁻¹ :=
5151
invOf_eq_right_inv (mul_inv_cancel₀ (Invertible.ne_zero a))
5252

5353
@[simp]
@@ -79,7 +79,7 @@ def invertibleDiv (a b : α) [Invertible a] [Invertible b] : Invertible (a / b)
7979
⟨b / a, by simp [← mul_div_assoc], by simp [← mul_div_assoc]⟩
8080

8181
theorem invOf_div (a b : α) [Invertible a] [Invertible b] [Invertible (a / b)] :
82-
(a / b) = b / a :=
82+
⅟(a / b) = b / a :=
8383
invOf_eq_right_inv (by simp [← mul_div_assoc])
8484

8585
end GroupWithZero

Mathlib/Algebra/Lie/Classical.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -276,7 +276,7 @@ theorem jd_transform [Fintype l] : (PD l R)ᵀ * JD l R * PD l R = (2 : R) • S
276276
rw [h, PD, s_as_blocks, Matrix.fromBlocks_multiply, Matrix.fromBlocks_smul]
277277
simp [two_smul]
278278

279-
theorem pd_inv [Fintype l] [Invertible (2 : R)] : PD l R * ⅟ (2 : R) • (PD l R)ᵀ = 1 := by
279+
theorem pd_inv [Fintype l] [Invertible (2 : R)] : PD l R * ⅟(2 : R) • (PD l R)ᵀ = 1 := by
280280
rw [PD, Matrix.fromBlocks_transpose, Matrix.fromBlocks_smul,
281281
Matrix.fromBlocks_multiply]
282282
simp
@@ -335,7 +335,7 @@ def PB :=
335335

336336
variable [Fintype l]
337337

338-
theorem pb_inv [Invertible (2 : R)] : PB l R * Matrix.fromBlocks 1 0 0 (⅟ (PD l R)) = 1 := by
338+
theorem pb_inv [Invertible (2 : R)] : PB l R * Matrix.fromBlocks 1 0 0 (⅟(PD l R)) = 1 := by
339339
rw [PB, Matrix.fromBlocks_multiply, mul_invOf_self]
340340
simp only [Matrix.mul_zero, Matrix.mul_one, Matrix.zero_mul, zero_add, add_zero,
341341
Matrix.fromBlocks_one]

Mathlib/Algebra/Module/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ theorem Units.neg_smul [Ring R] [AddCommGroup M] [Module R M] (u : Rˣ) (x : M)
3232
@[simp]
3333
theorem invOf_two_smul_add_invOf_two_smul (R) [Semiring R] [AddCommMonoid M] [Module R M]
3434
[Invertible (2 : R)] (x : M) :
35-
(⅟ 2 : R) • x + (⅟ 2 : R) • x = x :=
35+
(⅟2 : R) • x + (⅟2 : R) • x = x :=
3636
Convex.combo_self invOf_two_add_invOf_two _
3737

3838
theorem map_inv_natCast_smul [AddCommMonoid M] [AddCommMonoid M₂] {F : Type*} [FunLike F M M₂]

Mathlib/Algebra/Order/Invertible.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -14,23 +14,23 @@ import Mathlib.Data.Nat.Cast.Order.Ring
1414
variable {R : Type*} [Semiring R] [LinearOrder R] [IsStrictOrderedRing R] {a : R}
1515

1616
@[simp]
17-
theorem invOf_pos [Invertible a] : 0 < ⅟ a ↔ 0 < a :=
18-
haveI : 0 < a * ⅟ a := by simp only [mul_invOf_self, zero_lt_one]
17+
theorem invOf_pos [Invertible a] : 0 < ⅟a ↔ 0 < a :=
18+
haveI : 0 < a * ⅟a := by simp only [mul_invOf_self, zero_lt_one]
1919
fun h => pos_of_mul_pos_left this h.le, fun h => pos_of_mul_pos_right this h.le⟩
2020

2121
@[simp]
22-
theorem invOf_nonpos [Invertible a] : ⅟ a ≤ 0 ↔ a ≤ 0 := by simp only [← not_lt, invOf_pos]
22+
theorem invOf_nonpos [Invertible a] : ⅟a ≤ 0 ↔ a ≤ 0 := by simp only [← not_lt, invOf_pos]
2323

2424
@[simp]
25-
theorem invOf_nonneg [Invertible a] : 0 ≤ ⅟ a ↔ 0 ≤ a :=
26-
haveI : 0 < a * ⅟ a := by simp only [mul_invOf_self, zero_lt_one]
25+
theorem invOf_nonneg [Invertible a] : 0 ≤ ⅟a ↔ 0 ≤ a :=
26+
haveI : 0 < a * ⅟a := by simp only [mul_invOf_self, zero_lt_one]
2727
fun h => (pos_of_mul_pos_left this h).le, fun h => (pos_of_mul_pos_right this h).le⟩
2828

2929
@[simp]
30-
theorem invOf_lt_zero [Invertible a] : ⅟ a < 0 ↔ a < 0 := by simp only [← not_le, invOf_nonneg]
30+
theorem invOf_lt_zero [Invertible a] : ⅟a < 0 ↔ a < 0 := by simp only [← not_le, invOf_nonneg]
3131

3232
@[simp]
33-
theorem invOf_le_one [Invertible a] (h : 1 ≤ a) : ⅟ a ≤ 1 :=
33+
theorem invOf_le_one [Invertible a] (h : 1 ≤ a) : ⅟a ≤ 1 :=
3434
mul_invOf_self a ▸ le_mul_of_one_le_left (invOf_nonneg.2 <| zero_le_one.trans h) h
3535

3636
theorem pos_invOf_of_invertible_cast [Nontrivial R] (n : ℕ)

Mathlib/Algebra/Polynomial/AlgebraMap.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -293,11 +293,11 @@ theorem algEquivOfCompEqX_symm (p q : R[X]) (hpq : p.comp q = X) (hqp : q.comp p
293293
with inverse `p(X) ↦ p(a⁻¹ * (X - b))`. -/
294294
@[simps!]
295295
def algEquivCMulXAddC {R : Type*} [CommRing R] (a b : R) [Invertible a] : R[X] ≃ₐ[R] R[X] :=
296-
algEquivOfCompEqX (C a * X + C b) (C ⅟ a * (X - C b))
296+
algEquivOfCompEqX (C a * X + C b) (C ⅟a * (X - C b))
297297
(by simp [← C_mul, ← mul_assoc]) (by simp [← C_mul, ← mul_assoc])
298298

299299
theorem algEquivCMulXAddC_symm_eq {R : Type*} [CommRing R] (a b : R) [Invertible a] :
300-
(algEquivCMulXAddC a b).symm = algEquivCMulXAddC (⅟ a) (- ⅟ a * b) := by
300+
(algEquivCMulXAddC a b).symm = algEquivCMulXAddC (⅟a) (- ⅟a * b) := by
301301
ext p : 1
302302
simp only [algEquivCMulXAddC_symm_apply, neg_mul, algEquivCMulXAddC_apply, map_neg, map_mul]
303303
congr
@@ -585,7 +585,7 @@ lemma comp_X_add_C_eq_zero_iff : p.comp (X + C t) = 0 ↔ p = 0 :=
585585
lemma comp_X_add_C_ne_zero_iff : p.comp (X + C t) ≠ 0 ↔ p ≠ 0 := comp_X_add_C_eq_zero_iff.not
586586

587587
lemma dvd_comp_C_mul_X_add_C_iff (p q : R[X]) (a b : R) [Invertible a] :
588-
p ∣ q.comp (C a * X + C b) ↔ p.comp (C ⅟ a * (X - C b)) ∣ q := by
588+
p ∣ q.comp (C a * X + C b) ↔ p.comp (C ⅟a * (X - C b)) ∣ q := by
589589
convert map_dvd_iff <| algEquivCMulXAddC a b using 2
590590
simp [← comp_eq_aeval, comp_assoc, ← mul_assoc, ← C_mul]
591591

Mathlib/Algebra/Polynomial/Laurent.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -223,7 +223,7 @@ instance invertibleT (n : ℤ) : Invertible (T n : R[T;T⁻¹]) where
223223
mul_invOf_self := by rw [← T_add, add_neg_cancel, T_zero]
224224

225225
@[simp]
226-
theorem invOf_T (n : ℤ) : ⅟ (T n : R[T;T⁻¹]) = T (-n) :=
226+
theorem invOf_T (n : ℤ) : ⅟(T n : R[T;T⁻¹]) = T (-n) :=
227227
rfl
228228

229229
theorem isUnit_T (n : ℤ) : IsUnit (T n : R[T;T⁻¹]) :=

0 commit comments

Comments
 (0)