Skip to content

Commit aba5b6a

Browse files
committed
feat(Topology/Algebra/InfiniteSum/Order): Add tprod_subtype_le (#12600)
We add a lemma that says the tprod/tsum over a subtype is less than the full sum. Needed for #12456
1 parent 7906a8a commit aba5b6a

File tree

1 file changed

+9
-0
lines changed

1 file changed

+9
-0
lines changed

Mathlib/Topology/Algebra/InfiniteSum/Order.lean

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -81,6 +81,15 @@ theorem tprod_le_tprod_of_inj {g : κ → α} (e : ι → κ) (he : Injective e)
8181
hasProd_le_inj _ he hs h hf.hasProd hg.hasProd
8282
#align tsum_le_tsum_of_inj tsum_le_tsum_of_inj
8383

84+
@[to_additive]
85+
lemma tprod_subtype_le {κ γ : Type*} [OrderedCommGroup γ] [UniformSpace γ] [UniformGroup γ]
86+
[OrderClosedTopology γ] [ CompleteSpace γ] (f : κ → γ) (β : Set κ) (h : ∀ a : κ, 1 ≤ f a)
87+
(hf : Multipliable f) : (∏' (b : β), f b) ≤ (∏' (a : κ), f a) := by
88+
apply tprod_le_tprod_of_inj _ (Subtype.coe_injective) (by simp only [Subtype.range_coe_subtype,
89+
Set.setOf_mem_eq, h, implies_true]) (by simp only [le_refl,
90+
Subtype.forall, implies_true]) (by apply hf.subtype)
91+
apply hf
92+
8493
@[to_additive]
8594
theorem prod_le_hasProd (s : Finset ι) (hs : ∀ i, i ∉ s → 1 ≤ f i) (hf : HasProd f a) :
8695
∏ i ∈ s, f i ≤ a :=

0 commit comments

Comments
 (0)