@@ -46,6 +46,8 @@ open Set
46
46
47
47
namespace Function
48
48
49
+ open Function (Commute)
50
+
49
51
variable {α : Type *} {β : Type *} {f fa : α → α} {fb : β → β} {x y : α} {m n : ℕ}
50
52
51
53
/-- A point `x` is a periodic point of `f : α → α` of period `n` if `f^[n] x = x`.
@@ -421,18 +423,18 @@ theorem minimalPeriod_eq_prime_pow {p k : ℕ} [hp : Fact p.Prime] (hk : ¬IsPer
421
423
rwa [← isPeriodicPt_iff_minimalPeriod_dvd]
422
424
#align function.minimal_period_eq_prime_pow Function.minimalPeriod_eq_prime_pow
423
425
424
- theorem Commute.minimalPeriod_of_comp_dvd_lcm {g : α → α} (h : Function. Commute f g) :
426
+ theorem Commute.minimalPeriod_of_comp_dvd_lcm {g : α → α} (h : Commute f g) :
425
427
minimalPeriod (f ∘ g) x ∣ Nat.lcm (minimalPeriod f x) (minimalPeriod g x) := by
426
428
rw [← isPeriodicPt_iff_minimalPeriod_dvd]
427
429
exact (isPeriodicPt_minimalPeriod f x).comp_lcm h (isPeriodicPt_minimalPeriod g x)
428
430
#align function.commute.minimal_period_of_comp_dvd_lcm Function.Commute.minimalPeriod_of_comp_dvd_lcm
429
431
430
- theorem Commute.minimalPeriod_of_comp_dvd_mul {g : α → α} (h : Function. Commute f g) :
432
+ theorem Commute.minimalPeriod_of_comp_dvd_mul {g : α → α} (h : Commute f g) :
431
433
minimalPeriod (f ∘ g) x ∣ minimalPeriod f x * minimalPeriod g x :=
432
434
dvd_trans h.minimalPeriod_of_comp_dvd_lcm (lcm_dvd_mul _ _)
433
435
#align function.commute.minimal_period_of_comp_dvd_mul Function.Commute.minimalPeriod_of_comp_dvd_mul
434
436
435
- theorem Commute.minimalPeriod_of_comp_eq_mul_of_coprime {g : α → α} (h : Function. Commute f g)
437
+ theorem Commute.minimalPeriod_of_comp_eq_mul_of_coprime {g : α → α} (h : Commute f g)
436
438
(hco : coprime (minimalPeriod f x) (minimalPeriod g x)) :
437
439
minimalPeriod (f ∘ g) x = minimalPeriod f x * minimalPeriod g x := by
438
440
apply h.minimalPeriod_of_comp_dvd_mul.antisymm
0 commit comments