@@ -16,7 +16,7 @@ universe vβ vβ uβ uβ
16
16
17
17
open CategoryTheory
18
18
19
- open CategoryTheory.MonoidalCategory
19
+ open CategoryTheory.MonoidalCategory Mon_Class
20
20
21
21
variable {C : Type uβ} [Category.{vβ} C] [MonoidalCategory.{vβ} C]
22
22
@@ -78,17 +78,17 @@ structure Bimod (A B : Mon_ C) where
78
78
X : C
79
79
/-- The left action of this bimodule object -/
80
80
actLeft : A.X β X βΆ X
81
- one_actLeft : (A.one β· X) β« actLeft = (Ξ»_ X).hom := by aesop_cat
81
+ one_actLeft : Ξ· β· X β« actLeft = (Ξ»_ X).hom := by aesop_cat
82
82
left_assoc :
83
- (A.mul β· X) β« actLeft = (Ξ±_ A.X A.X X).hom β« ( A.X β actLeft) β« actLeft := by aesop_cat
83
+ ΞΌ β· X β« actLeft = (Ξ±_ A.X A.X X).hom β« A.X β actLeft β« actLeft := by aesop_cat
84
84
/-- The right action of this bimodule object -/
85
85
actRight : X β B.X βΆ X
86
- actRight_one : ( X β B.one) β« actRight = (Ο_ X).hom := by aesop_cat
86
+ actRight_one : X β Ξ· β« actRight = (Ο_ X).hom := by aesop_cat
87
87
right_assoc :
88
- ( X β B.mul) β« actRight = (Ξ±_ X B.X B.X).inv β« ( actRight β· B.X) β« actRight := by
88
+ X β ΞΌ β« actRight = (Ξ±_ X B.X B.X).inv β« actRight β· B.X β« actRight := by
89
89
aesop_cat
90
90
middle_assoc :
91
- ( actLeft β· B.X) β« actRight = (Ξ±_ A.X X B.X).hom β« ( A.X β actRight) β« actLeft := by
91
+ actLeft β· B.X β« actRight = (Ξ±_ A.X X B.X).hom β« A.X β actRight β« actLeft := by
92
92
aesop_cat
93
93
94
94
attribute [reassoc (attr := simp)] Bimod.one_actLeft Bimod.actRight_one Bimod.left_assoc
@@ -165,8 +165,8 @@ variable (A)
165
165
@[simps]
166
166
def regular : Bimod A A where
167
167
X := A.X
168
- actLeft := A.mul
169
- actRight := A.mul
168
+ actLeft := ΞΌ
169
+ actRight := ΞΌ
170
170
171
171
instance : Inhabited (Bimod A A) :=
172
172
β¨regular Aβ©
@@ -218,7 +218,7 @@ theorem whiskerLeft_Ο_actLeft :
218
218
erw [map_Ο_preserves_coequalizer_inv_colimMap (tensorLeft _)]
219
219
simp only [Category.assoc]
220
220
221
- theorem one_act_left' : (R.one β· _) β« actLeft P Q = (Ξ»_ _).hom := by
221
+ theorem one_act_left' : (Ξ· β· _) β« actLeft P Q = (Ξ»_ _).hom := by
222
222
refine (cancel_epi ((tensorLeft _).map (coequalizer.Ο _ _))).1 ?_
223
223
dsimp [X]
224
224
-- Porting note: had to replace `rw` by `erw`
@@ -230,7 +230,7 @@ theorem one_act_left' : (R.one β· _) β« actLeft P Q = (Ξ»_ _).hom := by
230
230
monoidal
231
231
232
232
theorem left_assoc' :
233
- (R.mul β· _) β« actLeft P Q = (Ξ±_ R.X R.X _).hom β« (R.X β actLeft P Q) β« actLeft P Q := by
233
+ (ΞΌ β· _) β« actLeft P Q = (Ξ±_ R.X R.X _).hom β« (R.X β actLeft P Q) β« actLeft P Q := by
234
234
refine (cancel_epi ((tensorLeft _).map (coequalizer.Ο _ _))).1 ?_
235
235
dsimp [X]
236
236
slice_lhs 1 2 => rw [whisker_exchange]
@@ -277,7 +277,7 @@ theorem Ο_tensor_id_actRight :
277
277
erw [map_Ο_preserves_coequalizer_inv_colimMap (tensorRight _)]
278
278
simp only [Category.assoc]
279
279
280
- theorem actRight_one' : (_ β T.one ) β« actRight P Q = (Ο_ _).hom := by
280
+ theorem actRight_one' : (_ β Ξ· ) β« actRight P Q = (Ο_ _).hom := by
281
281
refine (cancel_epi ((tensorRight _).map (coequalizer.Ο _ _))).1 ?_
282
282
dsimp [X]
283
283
-- Porting note: had to replace `rw` by `erw`
@@ -288,7 +288,7 @@ theorem actRight_one' : (_ β T.one) β« actRight P Q = (Ο_ _).hom := by
288
288
simp
289
289
290
290
theorem right_assoc' :
291
- (_ β T.mul ) β« actRight P Q =
291
+ (_ β ΞΌ ) β« actRight P Q =
292
292
(Ξ±_ _ T.X T.X).inv β« (actRight P Q β· T.X) β« actRight P Q := by
293
293
refine (cancel_epi ((tensorRight _).map (coequalizer.Ο _ _))).1 ?_
294
294
dsimp [X]
@@ -595,7 +595,7 @@ noncomputable def hom : TensorBimod.X (regular R) P βΆ P.X :=
595
595
596
596
/-- The underlying morphism of the inverse component of the left unitor isomorphism. -/
597
597
noncomputable def inv : P.X βΆ TensorBimod.X (regular R) P :=
598
- (Ξ»_ P.X).inv β« (R.one β· _) β« coequalizer.Ο _ _
598
+ (Ξ»_ P.X).inv β« (Ξ·[R.X] β· _) β« coequalizer.Ο _ _
599
599
600
600
theorem hom_inv_id : hom P β« inv P = π _ := by
601
601
dsimp only [hom, inv, TensorBimod.X]
@@ -606,7 +606,7 @@ theorem hom_inv_id : hom P β« inv P = π _ := by
606
606
slice_lhs 3 3 => rw [β Iso.inv_hom_id_assoc (Ξ±_ R.X R.X P.X) (R.X β P.actLeft)]
607
607
slice_lhs 4 6 => rw [β Category.assoc, β coequalizer.condition]
608
608
slice_lhs 2 3 => rw [associator_inv_naturality_left]
609
- slice_lhs 3 4 => rw [β comp_whiskerRight, Mon_ .one_mul]
609
+ slice_lhs 3 4 => rw [β comp_whiskerRight, Mon_Class .one_mul]
610
610
slice_rhs 1 2 => rw [Category.comp_id]
611
611
monoidal
612
612
@@ -650,7 +650,7 @@ noncomputable def hom : TensorBimod.X P (regular S) βΆ P.X :=
650
650
651
651
/-- The underlying morphism of the inverse component of the right unitor isomorphism. -/
652
652
noncomputable def inv : P.X βΆ TensorBimod.X P (regular S) :=
653
- (Ο_ P.X).inv β« (_ β S.one ) β« coequalizer.Ο _ _
653
+ (Ο_ P.X).inv β« (_ β Ξ·[S.X] ) β« coequalizer.Ο _ _
654
654
655
655
theorem hom_inv_id : hom P β« inv P = π _ := by
656
656
dsimp only [hom, inv, TensorBimod.X]
@@ -660,7 +660,7 @@ theorem hom_inv_id : hom P β« inv P = π _ := by
660
660
slice_lhs 2 3 => rw [β whisker_exchange]
661
661
slice_lhs 3 4 => rw [coequalizer.condition]
662
662
slice_lhs 2 3 => rw [associator_naturality_right]
663
- slice_lhs 3 4 => rw [β MonoidalCategory.whiskerLeft_comp, Mon_ .mul_one]
663
+ slice_lhs 3 4 => rw [β MonoidalCategory.whiskerLeft_comp, Mon_Class .mul_one]
664
664
slice_rhs 1 2 => rw [Category.comp_id]
665
665
monoidal
666
666
@@ -765,7 +765,7 @@ theorem id_whiskerLeft_bimod {X Y : Mon_ C} {M N : Bimod X Y} (f : M βΆ N) :
765
765
slice_rhs 4 4 => rw [β Iso.inv_hom_id_assoc (Ξ±_ X.X X.X N.X) (X.X β N.actLeft)]
766
766
slice_rhs 5 7 => rw [β Category.assoc, β coequalizer.condition]
767
767
slice_rhs 3 4 => rw [associator_inv_naturality_left]
768
- slice_rhs 4 5 => rw [β comp_whiskerRight, Mon_ .one_mul]
768
+ slice_rhs 4 5 => rw [β comp_whiskerRight, Mon_Class .one_mul]
769
769
have : (Ξ»_ (X.X β N.X)).inv β« (Ξ±_ (π_ C) X.X N.X).inv β« ((Ξ»_ X.X).hom β· N.X) = π _ := by
770
770
monoidal
771
771
slice_rhs 2 4 => rw [this]
@@ -819,7 +819,7 @@ theorem whiskerRight_id_bimod {X Y : Mon_ C} {M N : Bimod X Y} (f : M βΆ N) :
819
819
slice_rhs 3 4 => rw [β whisker_exchange]
820
820
slice_rhs 4 5 => rw [coequalizer.condition]
821
821
slice_rhs 3 4 => rw [associator_naturality_right]
822
- slice_rhs 4 5 => rw [β MonoidalCategory.whiskerLeft_comp, Mon_ .mul_one]
822
+ slice_rhs 4 5 => rw [β MonoidalCategory.whiskerLeft_comp, Mon_Class .mul_one]
823
823
simp
824
824
825
825
theorem whiskerRight_comp_bimod {W X Y Z : Mon_ C} {M M' : Bimod W X} (f : M βΆ M') (N : Bimod X Y)
0 commit comments