Skip to content

Commit ac6d999

Browse files
committed
feat(Algebra/Equiv): e.trans e.symm = refl (#29096)
From Toric
1 parent aaabaed commit ac6d999

File tree

1 file changed

+9
-3
lines changed

1 file changed

+9
-3
lines changed

Mathlib/Algebra/Algebra/Equiv.lean

Lines changed: 9 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -222,9 +222,8 @@ def refl : A₁ ≃ₐ[R] A₁ :=
222222
instance : Inhabited (A₁ ≃ₐ[R] A₁) :=
223223
⟨refl⟩
224224

225-
@[simp]
226-
theorem refl_toAlgHom : ↑(refl : A₁ ≃ₐ[R] A₁) = AlgHom.id R A₁ :=
227-
rfl
225+
@[simp, norm_cast] lemma refl_toAlgHom : (refl : A₁ ≃ₐ[R] A₁) = AlgHom.id R A₁ := rfl
226+
@[simp, norm_cast] lemma refl_toRingHom : (refl : A₁ ≃ₐ[R] A₁) = RingHom.id A₁ := rfl
228227

229228
@[simp]
230229
theorem coe_refl : ⇑(refl : A₁ ≃ₐ[R] A₁) = id :=
@@ -377,6 +376,13 @@ theorem symm_trans_apply (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A
377376
(e₁.trans e₂).symm x = e₁.symm (e₂.symm x) :=
378377
rfl
379378

379+
@[simp] lemma self_trans_symm (e : A₁ ≃ₐ[R] A₂) : e.trans e.symm = refl := by ext; simp
380+
@[simp] lemma symm_trans_self (e : A₁ ≃ₐ[R] A₂) : e.symm.trans e = refl := by ext; simp
381+
382+
@[simp, norm_cast]
383+
lemma toRingHom_trans (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) :
384+
(e₁.trans e₂ : A₁ →+* A₃) = .comp e₂ (e₁ : A₁ →+* A₂) := rfl
385+
380386
end trans
381387

382388
/-- If `A₁` is equivalent to `A₁'` and `A₂` is equivalent to `A₂'`, then the type of maps

0 commit comments

Comments
 (0)