File tree Expand file tree Collapse file tree 1 file changed +9
-3
lines changed Expand file tree Collapse file tree 1 file changed +9
-3
lines changed Original file line number Diff line number Diff line change @@ -222,9 +222,8 @@ def refl : A₁ ≃ₐ[R] A₁ :=
222
222
instance : Inhabited (A₁ ≃ₐ[R] A₁) :=
223
223
⟨refl⟩
224
224
225
- @[simp]
226
- theorem refl_toAlgHom : ↑(refl : A₁ ≃ₐ[R] A₁) = AlgHom.id R A₁ :=
227
- rfl
225
+ @[simp, norm_cast] lemma refl_toAlgHom : (refl : A₁ ≃ₐ[R] A₁) = AlgHom.id R A₁ := rfl
226
+ @[simp, norm_cast] lemma refl_toRingHom : (refl : A₁ ≃ₐ[R] A₁) = RingHom.id A₁ := rfl
228
227
229
228
@[simp]
230
229
theorem coe_refl : ⇑(refl : A₁ ≃ₐ[R] A₁) = id :=
@@ -377,6 +376,13 @@ theorem symm_trans_apply (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A
377
376
(e₁.trans e₂).symm x = e₁.symm (e₂.symm x) :=
378
377
rfl
379
378
379
+ @[simp] lemma self_trans_symm (e : A₁ ≃ₐ[R] A₂) : e.trans e.symm = refl := by ext; simp
380
+ @[simp] lemma symm_trans_self (e : A₁ ≃ₐ[R] A₂) : e.symm.trans e = refl := by ext; simp
381
+
382
+ @[simp, norm_cast]
383
+ lemma toRingHom_trans (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) :
384
+ (e₁.trans e₂ : A₁ →+* A₃) = .comp e₂ (e₁ : A₁ →+* A₂) := rfl
385
+
380
386
end trans
381
387
382
388
/-- If `A₁` is equivalent to `A₁'` and `A₂` is equivalent to `A₂'`, then the type of maps
You can’t perform that action at this time.
0 commit comments