Skip to content

Commit ad93d6e

Browse files
committed
style: further whitespace fixes (#24467)
Found by the upcoming linter in #24465.
1 parent 952f77f commit ad93d6e

File tree

48 files changed

+74
-74
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

48 files changed

+74
-74
lines changed

Mathlib/Algebra/Module/ZLattice/Covolume.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -205,7 +205,7 @@ private theorem tendsto_card_le_div''_aux
205205
see the `Naming conventions` section in the introduction. -/
206206
theorem tendsto_card_le_div'' [FiniteDimensional ℝ E] [MeasurableSpace E] [BorelSpace E]
207207
[Nonempty ι] {X : Set E} (hX : ∀ ⦃x⦄ ⦃r : ℝ⦄, x ∈ X → 0 < r → r • x ∈ X)
208-
{F : E → ℝ} (h₁ : ∀ x ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ card ι * (F x))
208+
{F : E → ℝ} (h₁ : ∀ x ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ card ι * (F x))
209209
(h₂ : IsBounded {x ∈ X | F x ≤ 1}) (h₃ : MeasurableSet {x ∈ X | F x ≤ 1})
210210
(h₄ : volume (frontier ((b.ofZLatticeBasis ℝ L).equivFun '' {x | x ∈ X ∧ F x ≤ 1})) = 0) :
211211
Tendsto (fun c : ℝ ↦
@@ -271,7 +271,7 @@ theorem tendsto_card_div_pow (b : Basis ι ℤ L) {s : Set (ι → ℝ)} (hs₁
271271
· rw [frontier_equivFun, volume_image_eq_volume_div_covolume, hs₃, ENNReal.zero_div]
272272

273273
theorem tendsto_card_le_div {X : Set (ι → ℝ)} (hX : ∀ ⦃x⦄ ⦃r : ℝ⦄, x ∈ X → 0 < r → r • x ∈ X)
274-
{F : (ι → ℝ) → ℝ} (h₁ : ∀ x ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ card ι * (F x))
274+
{F : (ι → ℝ) → ℝ} (h₁ : ∀ x ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ card ι * (F x))
275275
(h₂ : IsBounded {x ∈ X | F x ≤ 1}) (h₃ : MeasurableSet {x ∈ X | F x ≤ 1})
276276
(h₄ : volume (frontier {x | x ∈ X ∧ F x ≤ 1}) = 0) [Nonempty ι] :
277277
Tendsto (fun c : ℝ ↦
@@ -317,7 +317,7 @@ theorem tendsto_card_div_pow' {s : Set E} (hs₁ : IsBounded s) (hs₂ : Measura
317317
see the `Naming convention` section in the introduction. -/
318318
theorem tendsto_card_le_div' [Nontrivial E] {X : Set E} {F : E → ℝ}
319319
(hX : ∀ ⦃x⦄ ⦃r : ℝ⦄, x ∈ X → 0 < r → r • x ∈ X)
320-
(h₁ : ∀ x ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ finrank ℝ E * (F x))
320+
(h₁ : ∀ x ⦃r : ℝ⦄, 0 ≤ r → F (r • x) = r ^ finrank ℝ E * (F x))
321321
(h₂ : IsBounded {x ∈ X | F x ≤ 1}) (h₃ : MeasurableSet {x ∈ X | F x ≤ 1})
322322
(h₄ : volume (frontier {x ∈ X | F x ≤ 1}) = 0) :
323323
Tendsto (fun c : ℝ ↦

Mathlib/Algebra/Star/Subsemiring.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,7 @@ variable (R)
127127

128128
/-- The center of a semiring `R` is the set of elements that commute and associate with everything
129129
in `R` -/
130-
def center (R) [NonAssocSemiring R][StarRing R] : StarSubsemiring R where
130+
def center (R) [NonAssocSemiring R] [StarRing R] : StarSubsemiring R where
131131
toSubsemiring := Subsemiring.center R
132132
star_mem' := Set.star_mem_center
133133

Mathlib/Algebra/Vertex/HVertexOperator.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ theorem coeff_inj : Function.Injective (coeff : HVertexOperator Γ R V W → Γ
7676
condition, we produce a heterogeneous vertex operator. -/
7777
@[simps]
7878
def of_coeff (f : Γ → V →ₗ[R] W)
79-
(hf : ∀(x : V), (Function.support (f · x)).IsPWO) : HVertexOperator Γ R V W where
79+
(hf : ∀ (x : V), (Function.support (f · x)).IsPWO) : HVertexOperator Γ R V W where
8080
toFun x := (of R) { coeff := fun g => f g x, isPWO_support' := hf x }
8181
map_add' _ _ := by ext; simp
8282
map_smul' _ _ := by ext; simp

Mathlib/AlgebraicTopology/SimplicialSet/Horn.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ end
9797
9898
This edge only exists if `{i, a, b}` has cardinality less than `n`. -/
9999
@[simps]
100-
def edge (n : ℕ) (i a b : Fin (n+1)) (hab : a ≤ b) (H : #{i, a, b} ≤ n) :
100+
def edge (n : ℕ) (i a b : Fin (n + 1)) (hab : a ≤ b) (H : #{i, a, b} ≤ n) :
101101
(Λ[n, i] : SSet.{u}) _⦋1⦌ :=
102102
⟨stdSimplex.edge n a b hab, by
103103
have hS : ¬ ({i, a, b} = Finset.univ) := fun hS ↦ by
@@ -119,7 +119,7 @@ def edge (n : ℕ) (i a b : Fin (n+1)) (hab : a ≤ b) (H : #{i, a, b} ≤ n) :
119119
/-- Alternative constructor for the edge of `Λ[n, i]` with endpoints `a` and `b`,
120120
assuming `3 ≤ n`. -/
121121
@[simps!]
122-
def edge₃ (n : ℕ) (i a b : Fin (n+1)) (hab : a ≤ b) (H : 3 ≤ n) :
122+
def edge₃ (n : ℕ) (i a b : Fin (n + 1)) (hab : a ≤ b) (H : 3 ≤ n) :
123123
(Λ[n, i] : SSet.{u}) _⦋1⦌ :=
124124
edge n i a b hab <| Finset.card_le_three.trans H
125125

@@ -128,7 +128,7 @@ def edge₃ (n : ℕ) (i a b : Fin (n+1)) (hab : a ≤ b) (H : 3 ≤ n) :
128128
This constructor assumes `0 < i < n`,
129129
which is the type of horn that occurs in the horn-filling condition of quasicategories. -/
130130
@[simps!]
131-
def primitiveEdge {n : ℕ} {i : Fin (n+1)}
131+
def primitiveEdge {n : ℕ} {i : Fin (n + 1)}
132132
(h₀ : 0 < i) (hₙ : i < Fin.last n) (j : Fin n) :
133133
(Λ[n, i] : SSet.{u}) _⦋1⦌ := by
134134
refine edge n i j.castSucc j.succ ?_ ?_
@@ -144,9 +144,9 @@ def primitiveEdge {n : ℕ} {i : Fin (n+1)}
144144
This constructor assumes `0 < i < n`,
145145
which is the type of horn that occurs in the horn-filling condition of quasicategories. -/
146146
@[simps]
147-
def primitiveTriangle {n : ℕ} (i : Fin (n+4))
148-
(h₀ : 0 < i) (hₙ : i < Fin.last (n+3))
149-
(k : ℕ) (h : k < n+2) : (Λ[n+3, i] : SSet.{u}) _⦋2⦌ := by
147+
def primitiveTriangle {n : ℕ} (i : Fin (n + 4))
148+
(h₀ : 0 < i) (hₙ : i < Fin.last (n + 3))
149+
(k : ℕ) (h : k < n + 2) : (Λ[n+3, i] : SSet.{u}) _⦋2⦌ := by
150150
refine ⟨stdSimplex.triangle
151151
(n := n+3) ⟨k, by omega⟩ ⟨k+1, by omega⟩ ⟨k+2, by omega⟩ ?_ ?_, ?_⟩
152152
· simp only [Fin.mk_le_mk, le_add_iff_nonneg_right, zero_le]
@@ -185,7 +185,7 @@ def primitiveTriangle {n : ℕ} (i : Fin (n+4))
185185
· exact Ne.symm hl.2.2.2
186186

187187
/-- The `j`th face of codimension `1` of the `i`-th horn. -/
188-
def face {n : ℕ} (i j : Fin (n+2)) (h : j ≠ i) : (Λ[n+1, i] : SSet.{u}) _⦋n⦌ :=
188+
def face {n : ℕ} (i j : Fin (n + 2)) (h : j ≠ i) : (Λ[n+1, i] : SSet.{u}) _⦋n⦌ :=
189189
yonedaEquiv (Subpresheaf.lift (stdSimplex.δ j) (by
190190
simpa using face_le_horn _ _ h))
191191

Mathlib/Analysis/Analytic/Linear.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -167,7 +167,7 @@ theorem analyticOn_id : AnalyticOn 𝕜 (fun x : E ↦ x) s :=
167167
fun _ _ ↦ analyticWithinAt_id
168168

169169
/-- `fst` is analytic -/
170-
theorem analyticAt_fst : AnalyticAt 𝕜 (fun p : E × F ↦ p.fst) p :=
170+
theorem analyticAt_fst : AnalyticAt 𝕜 (fun p : E × F ↦ p.fst) p :=
171171
(ContinuousLinearMap.fst 𝕜 E F).analyticAt p
172172

173173
theorem analyticWithinAt_fst : AnalyticWithinAt 𝕜 (fun p : E × F ↦ p.fst) t p :=

Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -732,7 +732,7 @@ theorem norm_applyOrderedFinpartition_le (p : ∀ (i : Fin c.length), E [×c.par
732732
will be the key point to show that functions constructed from `applyOrderedFinpartition` retain
733733
multilinearity. -/
734734
theorem applyOrderedFinpartition_update_right
735-
(p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F)
735+
(p : ∀ (i : Fin c.length), E [×c.partSize i]→L[𝕜] F)
736736
(j : Fin n) (v : Fin n → E) (z : E) :
737737
c.applyOrderedFinpartition p (update v j z) =
738738
update (c.applyOrderedFinpartition p v) (c.index j)

Mathlib/Analysis/Convex/Body.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ theorem coe_mk (s : Set V) (h₁ h₂ h₃) : (mk s h₁ h₂ h₃ : Set V) = s
8181
rfl
8282

8383
/-- A convex body that is symmetric contains `0`. -/
84-
theorem zero_mem_of_symmetric (K : ConvexBody V) (h_symm : ∀ x ∈ K, - x ∈ K) : 0 ∈ K := by
84+
theorem zero_mem_of_symmetric (K : ConvexBody V) (h_symm : ∀ x ∈ K, -x ∈ K) : 0 ∈ K := by
8585
obtain ⟨x, hx⟩ := K.nonempty
8686
rw [show 0 = (1/2 : ℝ) • x + (1/2 : ℝ) • (- x) by field_simp]
8787
apply convex_iff_forall_pos.mp K.convex hx (h_symm x hx)

Mathlib/Analysis/Fourier/FourierTransformDeriv.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -501,7 +501,7 @@ lemma hasFTaylorSeriesUpTo_fourierIntegral' {N : ℕ∞}
501501

502502
/-- If `‖v‖^n * ‖f v‖` is integrable for all `n ≤ N`, then the Fourier transform of `f` is `C^N`. -/
503503
theorem contDiff_fourierIntegral {N : ℕ∞}
504-
(hf : ∀ (n : ℕ), n ≤ N → Integrable (fun v ↦ ‖v‖^n * ‖f v‖) μ) :
504+
(hf : ∀ (n : ℕ), n ≤ N → Integrable (fun v ↦ ‖v‖ ^ n * ‖f v‖) μ) :
505505
ContDiff ℝ N (fourierIntegral 𝐞 μ L.toLinearMap₂ f) := by
506506
by_cases h'f : Integrable f μ
507507
· exact (hasFTaylorSeriesUpTo_fourierIntegral' L hf h'f.1).contDiff
@@ -567,7 +567,7 @@ theorem fourierIntegral_iteratedFDeriv [FiniteDimensional ℝ V]
567567
Fourier integral of the `n`-th derivative of `(L v w) ^ k * f`. -/
568568
theorem fourierPowSMulRight_iteratedFDeriv_fourierIntegral [FiniteDimensional ℝ V]
569569
{μ : Measure V} [Measure.IsAddHaarMeasure μ] {K N : ℕ∞} (hf : ContDiff ℝ N f)
570-
(h'f : ∀ (k n : ℕ), k ≤ K → n ≤ N → Integrable (fun v ↦ ‖v‖^k * ‖iteratedFDeriv ℝ n f v‖) μ)
570+
(h'f : ∀ (k n : ℕ), k ≤ K → n ≤ N → Integrable (fun v ↦ ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) μ)
571571
{k n : ℕ} (hk : k ≤ K) (hn : n ≤ N) {w : W} :
572572
fourierPowSMulRight (-L.flip)
573573
(iteratedFDeriv ℝ k (fourierIntegral 𝐞 μ L.toLinearMap₂ f)) w n =
@@ -601,7 +601,7 @@ in terms of `|L v w| ^ n * ⬝`, see `pow_mul_norm_iteratedFDeriv_fourierIntegra
601601
-/
602602
theorem norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le [FiniteDimensional ℝ V]
603603
{μ : Measure V} [Measure.IsAddHaarMeasure μ] {K N : ℕ∞} (hf : ContDiff ℝ N f)
604-
(h'f : ∀ (k n : ℕ), k ≤ K → n ≤ N → Integrable (fun v ↦ ‖v‖^k * ‖iteratedFDeriv ℝ n f v‖) μ)
604+
(h'f : ∀ (k n : ℕ), k ≤ K → n ≤ N → Integrable (fun v ↦ ‖v‖ ^ k * ‖iteratedFDeriv ℝ n f v‖) μ)
605605
{k n : ℕ} (hk : k ≤ K) (hn : n ≤ N) {w : W} :
606606
‖fourierPowSMulRight (-L.flip)
607607
(iteratedFDeriv ℝ k (fourierIntegral 𝐞 μ L.toLinearMap₂ f)) w n‖ ≤
@@ -698,14 +698,14 @@ theorem fourierIntegral_fderiv
698698

699699
/-- If `‖v‖^n * ‖f v‖` is integrable, then the Fourier transform of `f` is `C^n`. -/
700700
theorem contDiff_fourierIntegral {N : ℕ∞}
701-
(hf : ∀ (n : ℕ), n ≤ N → Integrable (fun v ↦ ‖v‖^n * ‖f v‖)) :
701+
(hf : ∀ (n : ℕ), n ≤ N → Integrable (fun v ↦ ‖v‖ ^ n * ‖f v‖)) :
702702
ContDiff ℝ N (𝓕 f) :=
703703
VectorFourier.contDiff_fourierIntegral (innerSL ℝ) hf
704704

705705
/-- If `‖v‖^n * ‖f v‖` is integrable, then the `n`-th derivative of the Fourier transform of `f` is
706706
the Fourier transform of `fun v ↦ (-2 * π * I) ^ n ⟪v, ⬝⟫^n f v`. -/
707707
theorem iteratedFDeriv_fourierIntegral {N : ℕ∞}
708-
(hf : ∀ (n : ℕ), n ≤ N → Integrable (fun v ↦ ‖v‖^n * ‖f v‖))
708+
(hf : ∀ (n : ℕ), n ≤ N → Integrable (fun v ↦ ‖v‖ ^ n * ‖f v‖))
709709
(h'f : AEStronglyMeasurable f) {n : ℕ} (hn : n ≤ N) :
710710
iteratedFDeriv ℝ n (𝓕 f) = 𝓕 (fun v ↦ fourierPowSMulRight (innerSL ℝ) f v n) :=
711711
VectorFourier.iteratedFDeriv_fourierIntegral (innerSL ℝ) hf h'f hn

Mathlib/Analysis/MellinTransform.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -216,7 +216,7 @@ theorem mellin_convergent_top_of_isBigO {f : ℝ → ℝ}
216216
`b < s`, its Mellin transform converges on some right neighbourhood of `0`. -/
217217
theorem mellin_convergent_zero_of_isBigO {b : ℝ} {f : ℝ → ℝ}
218218
(hfc : AEStronglyMeasurable f <| volume.restrict (Ioi 0))
219-
(hf : f =O[𝓝[>] 0] (· ^ (-b))) {s : ℝ} (hs : b < s) :
219+
(hf : f =O[𝓝[>] 0] (· ^ (-b))) {s : ℝ} (hs : b < s) :
220220
∃ c : ℝ, 0 < c ∧ IntegrableOn (fun t : ℝ => t ^ (s - 1) * f t) (Ioc 0 c) := by
221221
obtain ⟨d, _, hd'⟩ := hf.exists_pos
222222
simp_rw [IsBigOWith, eventually_nhdsWithin_iff, Metric.eventually_nhds_iff, gt_iff_lt] at hd'

Mathlib/Analysis/Normed/Field/WithAbs.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -117,7 +117,7 @@ theorem isClosedEmbedding_extensionEmbedding_of_comp (h : ∀ x, ‖f x‖ = v x
117117

118118
/-- If the absolute value of a normed field factors through an embedding into another normed field
119119
that is locally compact, then the completion of the first normed field is also locally compact. -/
120-
theorem locallyCompactSpace [LocallyCompactSpace L] (h : ∀ x, ‖f x‖ = v x) :
120+
theorem locallyCompactSpace [LocallyCompactSpace L] (h : ∀ x, ‖f x‖ = v x) :
121121
LocallyCompactSpace (v.Completion) :=
122122
(isClosedEmbedding_extensionEmbedding_of_comp h).locallyCompactSpace
123123

0 commit comments

Comments
 (0)