@@ -1395,19 +1395,21 @@ theorem pi_generateFrom_eq_finite {π : ι → Type _} {g : ∀ a, Set (Set (π
1395
1395
by_cases a ∈ i <;> simp [*]
1396
1396
#align pi_generate_from_eq_finite pi_generateFrom_eq_finite
1397
1397
1398
+ -- porting note: new lemma
1399
+ theorem induced_to_pi {X : Type _} (f : X → ∀ i, π i) :
1400
+ induced f Pi.topologicalSpace = ⨅ i, induced (f · i) inferInstance := by
1401
+ erw [induced_infᵢ]
1402
+ simp only [induced_compose]
1403
+ rfl
1404
+
1398
1405
/-- Suppose `π i` is a family of topological spaces indexed by `i : ι`, and `X` is a type
1399
1406
endowed with a family of maps `f i : X → π i` for every `i : ι`, hence inducing a
1400
1407
map `g : X → Π i, π i`. This lemma shows that infimum of the topologies on `X` induced by
1401
1408
the `f i` as `i : ι` varies is simply the topology on `X` induced by `g : X → Π i, π i`
1402
1409
where `Π i, π i` is endowed with the usual product topology. -/
1403
1410
theorem inducing_infᵢ_to_pi {X : Type _} (f : ∀ i, X → π i) :
1404
- @Inducing X (∀ i, π i) (⨅ i, induced (f i) inferInstance) _ fun x i => f i x := by
1405
- letI := ⨅ i, induced (f i) inferInstance
1406
- constructor
1407
- erw [induced_infᵢ]
1408
- congr 1
1409
- funext
1410
- erw [induced_compose]; rfl
1411
+ @Inducing X (∀ i, π i) (⨅ i, induced (f i) inferInstance) _ fun x i => f i x :=
1412
+ letI := ⨅ i, induced (f i) inferInstance; ⟨(induced_to_pi _).symm⟩
1411
1413
#align inducing_infi_to_pi inducing_infᵢ_to_pi
1412
1414
1413
1415
variable [Finite ι] [∀ i, DiscreteTopology (π i)]
0 commit comments