File tree Expand file tree Collapse file tree 1 file changed +19
-0
lines changed
Mathlib/GroupTheory/GroupAction Expand file tree Collapse file tree 1 file changed +19
-0
lines changed Original file line number Diff line number Diff line change @@ -653,6 +653,19 @@ theorem isPretransitive_compHom
653
653
obtain ⟨e, rfl⟩ : ∃ e, f e = m := hf m
654
654
exact ⟨e, rfl⟩
655
655
656
+ @[to_additive]
657
+ theorem IsPretransitive.of_smul_eq {M N α : Type *} [SMul M α] [SMul N α]
658
+ [IsPretransitive M α] (f : M → N) (hf : ∀ {c : M} {x : α}, f c • x = c • x) :
659
+ IsPretransitive N α :=
660
+ ⟨fun x y ↦ (exists_smul_eq x y).elim fun m h ↦ ⟨f m, hf.trans h⟩⟩
661
+
662
+ @[to_additive]
663
+ theorem IsPretransitive.of_compHom
664
+ {M N α : Type *} [Monoid M] [Monoid N] [MulAction N α]
665
+ (f : M →* N) [h : letI := compHom α f; IsPretransitive M α] :
666
+ IsPretransitive N α :=
667
+ letI := compHom α f; h.of_smul_eq f rfl
668
+
656
669
end MulAction
657
670
658
671
end
@@ -666,6 +679,12 @@ theorem smul_one_smul {M} (N) [Monoid N] [SMul M N] [MulAction N α] [SMul M α]
666
679
#align smul_one_smul smul_one_smul
667
680
#align vadd_zero_vadd vadd_zero_vadd
668
681
682
+ @[to_additive]
683
+ theorem MulAction.IsPretransitive.of_isScalarTower (M : Type *) {N α : Type *} [Monoid N] [SMul M N]
684
+ [MulAction N α] [SMul M α] [IsScalarTower M N α] [IsPretransitive M α] :
685
+ IsPretransitive N α :=
686
+ of_smul_eq (fun x : M ↦ x • 1 ) (smul_one_smul N _ _)
687
+
669
688
@[to_additive (attr := simp)]
670
689
theorem smul_one_mul {M N} [MulOneClass N] [SMul M N] [IsScalarTower M N N] (x : M) (y : N) :
671
690
x • (1 : N) * y = x • y := by rw [smul_mul_assoc, one_mul]
You can’t perform that action at this time.
0 commit comments