Skip to content

Commit b4f6049

Browse files
committed
feat(GroupTheory/GroupAction/Defs): isPretransitive_of_compHom (#9122)
This PR adds `isPretransitive_of_compHom` after the related `isPretransitive_compHom`. Co-authored-by: Thomas Browning <tb65536@users.noreply.github.com>
1 parent 99315bf commit b4f6049

File tree

1 file changed

+19
-0
lines changed

1 file changed

+19
-0
lines changed

Mathlib/GroupTheory/GroupAction/Defs.lean

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -653,6 +653,19 @@ theorem isPretransitive_compHom
653653
obtain ⟨e, rfl⟩ : ∃ e, f e = m := hf m
654654
exact ⟨e, rfl⟩
655655

656+
@[to_additive]
657+
theorem IsPretransitive.of_smul_eq {M N α : Type*} [SMul M α] [SMul N α]
658+
[IsPretransitive M α] (f : M → N) (hf : ∀ {c : M} {x : α}, f c • x = c • x) :
659+
IsPretransitive N α :=
660+
fun x y ↦ (exists_smul_eq x y).elim fun m h ↦ ⟨f m, hf.trans h⟩⟩
661+
662+
@[to_additive]
663+
theorem IsPretransitive.of_compHom
664+
{M N α : Type*} [Monoid M] [Monoid N] [MulAction N α]
665+
(f : M →* N) [h : letI := compHom α f; IsPretransitive M α] :
666+
IsPretransitive N α :=
667+
letI := compHom α f; h.of_smul_eq f rfl
668+
656669
end MulAction
657670

658671
end
@@ -666,6 +679,12 @@ theorem smul_one_smul {M} (N) [Monoid N] [SMul M N] [MulAction N α] [SMul M α]
666679
#align smul_one_smul smul_one_smul
667680
#align vadd_zero_vadd vadd_zero_vadd
668681

682+
@[to_additive]
683+
theorem MulAction.IsPretransitive.of_isScalarTower (M : Type*) {N α : Type*} [Monoid N] [SMul M N]
684+
[MulAction N α] [SMul M α] [IsScalarTower M N α] [IsPretransitive M α] :
685+
IsPretransitive N α :=
686+
of_smul_eq (fun x : M ↦ x • 1) (smul_one_smul N _ _)
687+
669688
@[to_additive (attr := simp)]
670689
theorem smul_one_mul {M N} [MulOneClass N] [SMul M N] [IsScalarTower M N N] (x : M) (y : N) :
671690
x • (1 : N) * y = x • y := by rw [smul_mul_assoc, one_mul]

0 commit comments

Comments
 (0)