@@ -564,16 +564,16 @@ theorem comp_comp_symm_mem_uniformity_sets {s : Set (α × α)} (hs : s ∈ 𝓤
564
564
### Balls in uniform spaces
565
565
-/
566
566
567
+ namespace UniformSpace
568
+
567
569
/-- The ball around `(x : β)` with respect to `(V : Set (β × β))`. Intended to be
568
570
used for `V ∈ 𝓤 β`, but this is not needed for the definition. Recovers the
569
571
notions of metric space ball when `V = {p | dist p.1 p.2 < r }`. -/
570
- def UniformSpace.ball (x : β) (V : Set (β × β)) : Set β :=
571
- Prod.mk x ⁻¹' V
572
+ def ball (x : β) (V : Set (β × β)) : Set β := Prod.mk x ⁻¹' V
572
573
573
574
open UniformSpace (ball)
574
575
575
- theorem UniformSpace.mem_ball_self (x : α) {V : Set (α × α)} (hV : V ∈ 𝓤 α) : x ∈ ball x V :=
576
- refl_mem_uniformity hV
576
+ lemma mem_ball_self (x : α) {V : Set (α × α)} : V ∈ 𝓤 α → x ∈ ball x V := refl_mem_uniformity
577
577
578
578
/-- The triangle inequality for `UniformSpace.ball` -/
579
579
theorem mem_ball_comp {V W : Set (β × β)} {x y z} (h : y ∈ ball x V) (h' : z ∈ ball y W) :
@@ -612,11 +612,10 @@ theorem mem_comp_of_mem_ball {V W : Set (β × β)} {x y z : β} (hV : Symmetric
612
612
rw [mem_ball_symmetry hV] at hx
613
613
exact ⟨z, hx, hy⟩
614
614
615
- theorem UniformSpace. isOpen_ball (x : α) {V : Set (α × α)} (hV : IsOpen V) : IsOpen (ball x V) :=
615
+ lemma isOpen_ball (x : α) {V : Set (α × α)} (hV : IsOpen V) : IsOpen (ball x V) :=
616
616
hV.preimage <| continuous_const.prod_mk continuous_id
617
617
618
- theorem UniformSpace.isClosed_ball (x : α) {V : Set (α × α)} (hV : IsClosed V) :
619
- IsClosed (ball x V) :=
618
+ lemma isClosed_ball (x : α) {V : Set (α × α)} (hV : IsClosed V) : IsClosed (ball x V) :=
620
619
hV.preimage <| continuous_const.prod_mk continuous_id
621
620
622
621
theorem mem_comp_comp {V W M : Set (β × β)} (hW' : SymmetricRel W) {p : β × β} :
@@ -629,10 +628,14 @@ theorem mem_comp_comp {V W M : Set (β × β)} (hW' : SymmetricRel W) {p : β ×
629
628
rw [mem_ball_symmetry hW'] at z_in
630
629
exact ⟨z, ⟨w, w_in, hwz⟩, z_in⟩
631
630
631
+ end UniformSpace
632
+
632
633
/-!
633
634
### Neighborhoods in uniform spaces
634
635
-/
635
636
637
+ open UniformSpace
638
+
636
639
theorem mem_nhds_uniformity_iff_right {x : α} {s : Set α} :
637
640
s ∈ 𝓝 x ↔ { p : α × α | p.1 = x → p.2 ∈ s } ∈ 𝓤 α := by
638
641
simp only [nhds_eq_comap_uniformity, mem_comap_prod_mk]
0 commit comments