@@ -96,7 +96,7 @@ variable {f g : ι → N} {s t : Finset ι}
96
96
/-- In an ordered commutative monoid, if each factor `f i` of one finite product is less than or
97
97
equal to the corresponding factor `g i` of another finite product, then
98
98
`∏ i ∈ s, f i ≤ ∏ i ∈ s, g i`. -/
99
- @[to_additive sum_le_sum]
99
+ @[to_additive (attr := gcongr) sum_le_sum]
100
100
theorem prod_le_prod' (h : ∀ i ∈ s, f i ≤ g i) : ∏ i ∈ s, f i ≤ ∏ i ∈ s, g i :=
101
101
Multiset.prod_map_le_prod_map f g h
102
102
@@ -105,22 +105,6 @@ or equal to the corresponding summand `g i` of another finite sum, then
105
105
`∑ i ∈ s, f i ≤ ∑ i ∈ s, g i`. -/
106
106
add_decl_doc sum_le_sum
107
107
108
- /-- In an ordered commutative monoid, if each factor `f i` of one finite product is less than or
109
- equal to the corresponding factor `g i` of another finite product, then `s.prod f ≤ s.prod g`.
110
-
111
- This is a variant (beta-reduced) version of the standard lemma `Finset.prod_le_prod'`, convenient
112
- for the `gcongr` tactic. -/
113
- @[to_additive (attr := gcongr) GCongr.sum_le_sum]
114
- theorem _root_.GCongr.prod_le_prod' (h : ∀ i ∈ s, f i ≤ g i) : s.prod f ≤ s.prod g :=
115
- s.prod_le_prod' h
116
-
117
- /-- In an ordered additive commutative monoid, if each summand `f i` of one finite sum is less than
118
- or equal to the corresponding summand `g i` of another finite sum, then `s.sum f ≤ s.sum g`.
119
-
120
- This is a variant (beta-reduced) version of the standard lemma `Finset.sum_le_sum`, convenient
121
- for the `gcongr` tactic. -/
122
- add_decl_doc GCongr.sum_le_sum
123
-
124
108
@[to_additive sum_nonneg]
125
109
theorem one_le_prod' (h : ∀ i ∈ s, 1 ≤ f i) : 1 ≤ ∏ i ∈ s, f i :=
126
110
le_trans (by rw [prod_const_one]) (prod_le_prod' h)
@@ -385,29 +369,18 @@ theorem prod_lt_prod' (hle : ∀ i ∈ s, f i ≤ g i) (hlt : ∃ i ∈ s, f i <
385
369
∏ i ∈ s, f i < ∏ i ∈ s, g i :=
386
370
Multiset.prod_lt_prod' hle hlt
387
371
388
- @[to_additive sum_lt_sum_of_nonempty]
372
+ /-- In an ordered commutative monoid, if each factor `f i` of one nontrivial finite product is
373
+ strictly less than the corresponding factor `g i` of another nontrivial finite product, then
374
+ `s.prod f < s.prod g`. -/
375
+ @[to_additive (attr := gcongr) sum_lt_sum_of_nonempty]
389
376
theorem prod_lt_prod_of_nonempty' (hs : s.Nonempty) (hlt : ∀ i ∈ s, f i < g i) :
390
377
∏ i ∈ s, f i < ∏ i ∈ s, g i :=
391
378
Multiset.prod_lt_prod_of_nonempty' (by aesop) hlt
392
379
393
- /-- In an ordered commutative monoid, if each factor `f i` of one nontrivial finite product is
394
- strictly less than the corresponding factor `g i` of another nontrivial finite product, then
395
- `s.prod f < s.prod g`.
396
-
397
- This is a variant (beta-reduced) version of the standard lemma `Finset.prod_lt_prod_of_nonempty'`,
398
- convenient for the `gcongr` tactic. -/
399
- @[to_additive (attr := gcongr) GCongr.sum_lt_sum_of_nonempty]
400
- theorem _root_.GCongr.prod_lt_prod_of_nonempty' (hs : s.Nonempty) (Hlt : ∀ i ∈ s, f i < g i) :
401
- s.prod f < s.prod g :=
402
- s.prod_lt_prod_of_nonempty' hs Hlt
403
-
404
380
/-- In an ordered additive commutative monoid, if each summand `f i` of one nontrivial finite sum is
405
381
strictly less than the corresponding summand `g i` of another nontrivial finite sum, then
406
- `s.sum f < s.sum g`.
407
-
408
- This is a variant (beta-reduced) version of the standard lemma `Finset.sum_lt_sum_of_nonempty`,
409
- convenient for the `gcongr` tactic. -/
410
- add_decl_doc GCongr.sum_lt_sum_of_nonempty
382
+ `s.sum f < s.sum g`. -/
383
+ add_decl_doc sum_lt_sum_of_nonempty
411
384
412
385
-- Porting note (#11215): TODO -- calc indentation
413
386
@[to_additive sum_lt_sum_of_subset]
0 commit comments