Skip to content

Commit b68cba4

Browse files
committed
chore(Topology/SubsetProperties): rename isCompact_of_isClosed_subset (#7298)
As discussed [on Zulip](https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/naming.20in.20docs.23SubsetProperties/near/392310506). Co-authored-by: grunweg <grunweg@posteo.de>
1 parent d44ca29 commit b68cba4

File tree

19 files changed

+37
-38
lines changed

19 files changed

+37
-38
lines changed

Mathlib/Analysis/Calculus/ContDiffDef.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1580,7 +1580,7 @@ theorem support_iteratedFDeriv_subset (n : ℕ) : support (iteratedFDeriv 𝕜 n
15801580

15811581
theorem HasCompactSupport.iteratedFDeriv (hf : HasCompactSupport f) (n : ℕ) :
15821582
HasCompactSupport (iteratedFDeriv 𝕜 n f) :=
1583-
isCompact_of_isClosed_subset hf isClosed_closure (tsupport_iteratedFDeriv_subset n)
1583+
hf.of_isClosed_subset isClosed_closure (tsupport_iteratedFDeriv_subset n)
15841584
#align has_compact_support.iterated_fderiv HasCompactSupport.iteratedFDeriv
15851585

15861586
theorem norm_fderiv_iteratedFDeriv {n : ℕ} :

Mathlib/Analysis/Convex/Exposed.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -187,7 +187,7 @@ protected theorem isClosed [OrderClosedTopology 𝕜] {A B : Set E} (hAB : IsExp
187187

188188
protected theorem isCompact [OrderClosedTopology 𝕜] [T2Space E] {A B : Set E}
189189
(hAB : IsExposed 𝕜 A B) (hA : IsCompact A) : IsCompact B :=
190-
isCompact_of_isClosed_subset hA (hAB.isClosed hA.isClosed) hAB.subset
190+
hA.of_isClosed_subset (hAB.isClosed hA.isClosed) hAB.subset
191191
#align is_exposed.is_compact IsExposed.isCompact
192192

193193
end IsExposed

Mathlib/Analysis/Convex/KreinMilman.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ theorem IsCompact.has_extreme_point (hscomp : IsCompact s) (hsnemp : s.Nonempty)
6969
by_contra hyx
7070
obtain ⟨l, hl⟩ := geometric_hahn_banach_point_point hyx
7171
obtain ⟨z, hzt, hz⟩ :=
72-
(isCompact_of_isClosed_subset hscomp htclos hst.1).exists_forall_ge ⟨x, hxt⟩
72+
(hscomp.of_isClosed_subset htclos hst.1).exists_forall_ge ⟨x, hxt⟩
7373
l.continuous.continuousOn
7474
have h : IsExposed ℝ t ({ z ∈ t | ∀ w ∈ t, l w ≤ l z }) := fun _ => ⟨l, rfl⟩
7575
rw [← hBmin ({ z ∈ t | ∀ w ∈ t, l w ≤ l z })
@@ -84,7 +84,7 @@ theorem IsCompact.has_extreme_point (hscomp : IsCompact s) (hsnemp : s.Nonempty)
8484
rw [sInter_eq_iInter]
8585
refine' IsCompact.nonempty_iInter_of_directed_nonempty_compact_closed _ (fun t u => _)
8686
(fun t => (hFS t.mem).1)
87-
(fun t => isCompact_of_isClosed_subset hscomp (hFS t.mem).2.1 (hFS t.mem).2.2.1) fun t =>
87+
(fun t => hscomp.of_isClosed_subset (hFS t.mem).2.1 (hFS t.mem).2.2.1) fun t =>
8888
(hFS t.mem).2.1
8989
obtain htu | hut := hF.total t.mem u.mem
9090
exacts [⟨t, Subset.rfl, htu⟩, ⟨u, hut, Subset.rfl⟩]

Mathlib/Analysis/Convolution.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -584,7 +584,7 @@ variable [TopologicalAddGroup G]
584584

585585
protected theorem HasCompactSupport.convolution [T2Space G] (hcf : HasCompactSupport f)
586586
(hcg : HasCompactSupport g) : HasCompactSupport (f ⋆[L, μ] g) :=
587-
isCompact_of_isClosed_subset (hcg.isCompact.add hcf) isClosed_closure <|
587+
(hcg.isCompact.add hcf).of_isClosed_subset isClosed_closure <|
588588
closure_minimal
589589
((support_convolution_subset_swap L).trans <| add_subset_add subset_closure subset_closure)
590590
(hcg.isCompact.add hcf).isClosed
@@ -643,7 +643,7 @@ theorem continuousOn_convolution_right_with_param' {g : P → G → E'} {s : Set
643643
filter_upwards [self_mem_nhdsWithin]
644644
rintro ⟨p, x⟩ ⟨hp, -⟩
645645
refine' (HasCompactSupport.convolutionExists_right L _ hf (A _ hp) _).1
646-
exact isCompact_of_isClosed_subset hk (isClosed_tsupport _) (B p hp)
646+
exact hk.of_isClosed_subset (isClosed_tsupport _) (B p hp)
647647
let K' := -k + {q₀.2}
648648
have hK' : IsCompact K' := hk.neg.add isCompact_singleton
649649
obtain ⟨U, U_open, K'U, hU⟩ : ∃ U, IsOpen U ∧ K' ⊆ U ∧ IntegrableOn f U μ :=
@@ -1270,7 +1270,7 @@ theorem hasFDerivAt_convolution_right_with_param {g : P → G → E'} {s : Set P
12701270
filter_upwards [A' q₀ hq₀]
12711271
rintro ⟨p, x⟩ ⟨hp, -⟩
12721272
refine' (HasCompactSupport.convolutionExists_right L _ hf (A _ hp) _).1
1273-
apply isCompact_of_isClosed_subset hk (isClosed_tsupport _)
1273+
apply hk.of_isClosed_subset (isClosed_tsupport _)
12741274
exact closure_minimal (support_subset_iff'.2 fun z hz => hgs _ _ hp hz) hk.isClosed
12751275
have I2 : Integrable (fun a : G => L (f a) (g q₀.1 (q₀.2 - a))) μ := by
12761276
have M : HasCompactSupport (g q₀.1) := HasCompactSupport.intro hk fun x hx => hgs q₀.1 x hq₀ hx

Mathlib/Analysis/NormedSpace/Algebra.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ instance [ProperSpace 𝕜] : CompactSpace (characterSpace 𝕜 A) := by
4848
intro φ hφ
4949
rw [Set.mem_preimage, mem_closedBall_zero_iff]
5050
exact (norm_le_norm_one ⟨φ, ⟨hφ.1, hφ.2⟩⟩ : _)
51-
exact isCompact_of_isClosed_subset (isCompact_closedBall 𝕜 0 _) CharacterSpace.isClosed h
51+
exact (isCompact_closedBall 𝕜 0 _).of_isClosed_subset CharacterSpace.isClosed h
5252

5353
end CharacterSpace
5454

Mathlib/Analysis/NormedSpace/FiniteDimension.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -488,7 +488,7 @@ theorem HasCompactMulSupport.eq_one_or_finiteDimensional {X : Type*} [Topologica
488488
obtain ⟨r : ℝ, rpos : 0 < r, hr : Metric.closedBall x r ⊆ Function.mulSupport f⟩ :=
489489
Metric.nhds_basis_closedBall.mem_iff.1 this
490490
have : IsCompact (Metric.closedBall x r) :=
491-
isCompact_of_isClosed_subset hf Metric.isClosed_ball (hr.trans (subset_mulTSupport _))
491+
hf.of_isClosed_subset Metric.isClosed_ball (hr.trans (subset_mulTSupport _))
492492
exact finiteDimensional_of_isCompact_closedBall 𝕜 rpos this
493493
#align has_compact_mul_support.eq_one_or_finite_dimensional HasCompactMulSupport.eq_one_or_finiteDimensional
494494
#align has_compact_support.eq_zero_or_finite_dimensional HasCompactSupport.eq_zero_or_finiteDimensional
@@ -509,14 +509,14 @@ lemma properSpace_of_locallyCompactSpace (𝕜 : Type*) [NontriviallyNormedField
509509
· simpa [dist_eq_norm, norm_smul, inv_mul_le_iff (pow_pos (zero_lt_one.trans hc) _)] using hy
510510
· have : c^n ≠ 0 := pow_ne_zero _ (norm_pos_iff.1 (zero_lt_one.trans hc))
511511
simp [smul_smul, mul_inv_cancel this]
512-
exact isCompact_of_isClosed_subset (hr.image Cf) isClosed_ball A
512+
exact (hr.image Cf).of_isClosed_subset isClosed_ball A
513513
refine ⟨fun x s ↦ ?_⟩
514514
have L : ∀ᶠ n in (atTop : Filter ℕ), s ≤ ‖c‖^n * r := by
515515
have : Tendsto (fun n ↦ ‖c‖^n * r) atTop atTop :=
516516
Tendsto.atTop_mul_const rpos (tendsto_pow_atTop_atTop_of_one_lt hc)
517517
exact Tendsto.eventually_ge_atTop this s
518518
rcases L.exists with ⟨n, hn⟩
519-
exact isCompact_of_isClosed_subset (M n x) isClosed_ball (closedBall_subset_closedBall hn)
519+
exact (M n x).of_isClosed_subset isClosed_ball (closedBall_subset_closedBall hn)
520520

521521
end Riesz
522522

@@ -620,7 +620,7 @@ nonrec theorem IsCompact.exists_mem_frontier_infDist_compl_eq_dist {E : Type*}
620620
rcases hx' with ⟨r, hr₀, hrK⟩
621621
have : FiniteDimensional ℝ E :=
622622
finiteDimensional_of_isCompact_closedBall ℝ hr₀
623-
(isCompact_of_isClosed_subset hK Metric.isClosed_ball hrK)
623+
(hK.of_isClosed_subset Metric.isClosed_ball hrK)
624624
exact exists_mem_frontier_infDist_compl_eq_dist hx hK.ne_univ
625625
· refine' ⟨x, hx', _⟩
626626
rw [frontier_eq_closure_inter_closure] at hx'

Mathlib/Dynamics/OmegaLimit.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -237,7 +237,7 @@ theorem eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit
237237
rcases hc₂ with ⟨v, hv₁, hv₂⟩
238238
let k := closure (image2 ϕ v s)
239239
have hk : IsCompact (k \ n) :=
240-
IsCompact.diff (isCompact_of_isClosed_subset hc₁ isClosed_closure hv₂) hn₁
240+
(hc₁.of_isClosed_subset isClosed_closure hv₂).diff hn₁
241241
let j u := (closure (image2 ϕ (u ∩ v) s))ᶜ
242242
have hj₁ : ∀ u ∈ f, IsOpen (j u) := fun _ _ ↦ isOpen_compl_iff.mpr isClosed_closure
243243
have hj₂ : k \ n ⊆ ⋃ u ∈ f, j u := by
@@ -315,7 +315,7 @@ theorem nonempty_omegaLimit_of_isCompact_absorbing [NeBot f] {c : Set β} (hc₁
315315
Nonempty.image2 (Filter.nonempty_of_mem (inter_mem u.prop hv₁)) hs
316316
exact hn.mono subset_closure
317317
· intro
318-
apply isCompact_of_isClosed_subset hc₁ isClosed_closure
318+
apply hc₁.of_isClosed_subset isClosed_closure
319319
calc
320320
_ ⊆ closure (image2 ϕ v s) := closure_mono (image2_subset (inter_subset_right _ _) Subset.rfl)
321321
_ ⊆ c := hv₂

Mathlib/Geometry/Manifold/BumpFunction.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -277,7 +277,7 @@ theorem tsupport_subset_chartAt_source : tsupport f ⊆ (chartAt H c).source :=
277277
#align smooth_bump_function.tsupport_subset_chart_at_source SmoothBumpFunction.tsupport_subset_chartAt_source
278278

279279
protected theorem hasCompactSupport : HasCompactSupport f :=
280-
isCompact_of_isClosed_subset f.isCompact_symm_image_closedBall isClosed_closure
280+
f.isCompact_symm_image_closedBall.of_isClosed_subset isClosed_closure
281281
f.tsupport_subset_symm_image_closedBall
282282
#align smooth_bump_function.has_compact_support SmoothBumpFunction.hasCompactSupport
283283

Mathlib/MeasureTheory/Function/LocallyIntegrable.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@ theorem locallyIntegrableOn_iff [LocallyCompactSpace X] [T2Space X] (hs : IsClos
144144
let ⟨K, hK, h2K⟩ := exists_compact_mem_nhds x
145145
⟨_, inter_mem_nhdsWithin s h2K,
146146
hf _ (inter_subset_left _ _)
147-
(isCompact_of_isClosed_subset hK (hs.inter hK.isClosed) (inter_subset_right _ _))⟩
147+
(hK.of_isClosed_subset (hs.inter hK.isClosed) (inter_subset_right _ _))⟩
148148
| inr hs =>
149149
obtain ⟨K, hK, h2K, h3K⟩ := exists_compact_subset hs hx
150150
refine' ⟨K, _, hf K h3K hK⟩

Mathlib/Topology/Algebra/Group/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1715,7 +1715,7 @@ theorem exists_isCompact_isClosed_subset_isCompact_nhds_one
17151715
mul_subset_mul_right <| singleton_subset_iff.2 hV₁
17161716
_ = V * V := hVo.mul_closure _
17171717
_ ⊆ L := hVL
1718-
exact ⟨closure V, isCompact_of_isClosed_subset Lcomp isClosed_closure hcVL, isClosed_closure,
1718+
exact ⟨closure V, Lcomp.of_isClosed_subset isClosed_closure hcVL, isClosed_closure,
17191719
hcVL, mem_of_superset (hVo.mem_nhds hV₁) subset_closure⟩
17201720

17211721
/-- In a locally compact group, any neighborhood of the identity contains a compact closed

0 commit comments

Comments
 (0)