@@ -488,7 +488,7 @@ theorem HasCompactMulSupport.eq_one_or_finiteDimensional {X : Type*} [Topologica
488
488
obtain ⟨r : ℝ, rpos : 0 < r, hr : Metric.closedBall x r ⊆ Function.mulSupport f⟩ :=
489
489
Metric.nhds_basis_closedBall.mem_iff.1 this
490
490
have : IsCompact (Metric.closedBall x r) :=
491
- isCompact_of_isClosed_subset hf Metric.isClosed_ball (hr.trans (subset_mulTSupport _))
491
+ hf.of_isClosed_subset Metric.isClosed_ball (hr.trans (subset_mulTSupport _))
492
492
exact finiteDimensional_of_isCompact_closedBall 𝕜 rpos this
493
493
#align has_compact_mul_support.eq_one_or_finite_dimensional HasCompactMulSupport.eq_one_or_finiteDimensional
494
494
#align has_compact_support.eq_zero_or_finite_dimensional HasCompactSupport.eq_zero_or_finiteDimensional
@@ -509,14 +509,14 @@ lemma properSpace_of_locallyCompactSpace (𝕜 : Type*) [NontriviallyNormedField
509
509
· simpa [dist_eq_norm, norm_smul, inv_mul_le_iff (pow_pos (zero_lt_one.trans hc) _)] using hy
510
510
· have : c^n ≠ 0 := pow_ne_zero _ (norm_pos_iff.1 (zero_lt_one.trans hc))
511
511
simp [smul_smul, mul_inv_cancel this]
512
- exact isCompact_of_isClosed_subset (hr.image Cf) isClosed_ball A
512
+ exact (hr.image Cf).of_isClosed_subset isClosed_ball A
513
513
refine ⟨fun x s ↦ ?_⟩
514
514
have L : ∀ᶠ n in (atTop : Filter ℕ), s ≤ ‖c‖^n * r := by
515
515
have : Tendsto (fun n ↦ ‖c‖^n * r) atTop atTop :=
516
516
Tendsto.atTop_mul_const rpos (tendsto_pow_atTop_atTop_of_one_lt hc)
517
517
exact Tendsto.eventually_ge_atTop this s
518
518
rcases L.exists with ⟨n, hn⟩
519
- exact isCompact_of_isClosed_subset (M n x) isClosed_ball (closedBall_subset_closedBall hn)
519
+ exact (M n x).of_isClosed_subset isClosed_ball (closedBall_subset_closedBall hn)
520
520
521
521
end Riesz
522
522
@@ -620,7 +620,7 @@ nonrec theorem IsCompact.exists_mem_frontier_infDist_compl_eq_dist {E : Type*}
620
620
rcases hx' with ⟨r, hr₀, hrK⟩
621
621
have : FiniteDimensional ℝ E :=
622
622
finiteDimensional_of_isCompact_closedBall ℝ hr₀
623
- (isCompact_of_isClosed_subset hK Metric.isClosed_ball hrK)
623
+ (hK.of_isClosed_subset Metric.isClosed_ball hrK)
624
624
exact exists_mem_frontier_infDist_compl_eq_dist hx hK.ne_univ
625
625
· refine' ⟨x, hx', _⟩
626
626
rw [frontier_eq_closure_inter_closure] at hx'
0 commit comments