|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Yaël Dillies. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Yaël Dillies |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module order.category.BddDistLat |
| 7 | +! leanprover-community/mathlib commit e8ac6315bcfcbaf2d19a046719c3b553206dac75 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Order.Category.BddLatCat |
| 12 | +import Mathlib.Order.Category.DistLatCat |
| 13 | + |
| 14 | +/-! |
| 15 | +# The category of bounded distributive lattices |
| 16 | +
|
| 17 | +This defines `BddDistLatCat`, the category of bounded distributive lattices. |
| 18 | +
|
| 19 | +Note that this category is sometimes called [`DistLat`](https://ncatlab.org/nlab/show/DistLat) when |
| 20 | +being a lattice is understood to entail having a bottom and a top element. |
| 21 | +-/ |
| 22 | + |
| 23 | +set_option linter.uppercaseLean3 false |
| 24 | + |
| 25 | +universe u |
| 26 | + |
| 27 | +open CategoryTheory |
| 28 | + |
| 29 | +/-- The category of bounded distributive lattices with bounded lattice morphisms. -/ |
| 30 | +structure BddDistLatCat where |
| 31 | + toDistLatCat : DistLatCat |
| 32 | + [isBoundedOrder : BoundedOrder toDistLatCat] |
| 33 | +#align BddDistLat BddDistLatCat |
| 34 | + |
| 35 | +namespace BddDistLatCat |
| 36 | + |
| 37 | +instance : CoeSort BddDistLatCat (Type _) := |
| 38 | + ⟨fun X => X.toDistLatCat⟩ |
| 39 | + |
| 40 | +instance (X : BddDistLatCat) : DistribLattice X := |
| 41 | + X.toDistLatCat.str |
| 42 | + |
| 43 | +attribute [instance] BddDistLatCat.isBoundedOrder |
| 44 | + |
| 45 | +/-- Construct a bundled `BddDistLatCat` from a `BoundedOrder` `DistribLattice`. -/ |
| 46 | +def of (α : Type _) [DistribLattice α] [BoundedOrder α] : BddDistLatCat := |
| 47 | + -- Porting note: was `⟨⟨α⟩⟩` |
| 48 | + -- see https://github.com/leanprover-community/mathlib4/issues/4998 |
| 49 | + ⟨{α := α}⟩ |
| 50 | +#align BddDistLat.of BddDistLatCat.of |
| 51 | + |
| 52 | +@[simp] |
| 53 | +theorem coe_of (α : Type _) [DistribLattice α] [BoundedOrder α] : ↥(of α) = α := |
| 54 | + rfl |
| 55 | +#align BddDistLat.coe_of BddDistLatCat.coe_of |
| 56 | + |
| 57 | +instance : Inhabited BddDistLatCat := |
| 58 | + ⟨of PUnit⟩ |
| 59 | + |
| 60 | +/-- Turn a `BddDistLatCat` into a `BddLatCat` by forgetting it is distributive. -/ |
| 61 | +def toBddLat (X : BddDistLatCat) : BddLatCat := |
| 62 | + BddLatCat.of X |
| 63 | +#align BddDistLat.to_BddLat BddDistLatCat.toBddLat |
| 64 | + |
| 65 | +@[simp] |
| 66 | +theorem coe_toBddLat (X : BddDistLatCat) : ↥X.toBddLat = ↥X := |
| 67 | + rfl |
| 68 | +#align BddDistLatCat.coe_to_BddLat BddDistLatCat.coe_toBddLat |
| 69 | + |
| 70 | +instance : LargeCategory.{u} BddDistLatCat := |
| 71 | + InducedCategory.category toBddLat |
| 72 | + |
| 73 | +instance : ConcreteCategory BddDistLatCat := |
| 74 | + InducedCategory.concreteCategory toBddLat |
| 75 | + |
| 76 | +instance hasForgetToDistLat : HasForget₂ BddDistLatCat DistLatCat where |
| 77 | + forget₂ := |
| 78 | + -- Porting note: was `⟨X⟩` |
| 79 | + -- see https://github.com/leanprover-community/mathlib4/issues/4998 |
| 80 | + { obj := fun X => { α := X } |
| 81 | + map := fun {X Y} => BoundedLatticeHom.toLatticeHom } |
| 82 | +#align BddDistLat.has_forget_to_DistLat BddDistLatCat.hasForgetToDistLat |
| 83 | + |
| 84 | +instance hasForgetToBddLat : HasForget₂ BddDistLatCat BddLatCat := |
| 85 | + InducedCategory.hasForget₂ toBddLat |
| 86 | +#align BddDistLat.has_forget_to_BddLat BddDistLatCat.hasForgetToBddLat |
| 87 | + |
| 88 | +theorem forget_bddLat_latCat_eq_forget_distLatCat_latCat : |
| 89 | + forget₂ BddDistLatCat BddLatCat ⋙ forget₂ BddLatCat LatCat = |
| 90 | + forget₂ BddDistLatCat DistLatCat ⋙ forget₂ DistLatCat LatCat := |
| 91 | + rfl |
| 92 | +#align BddDistLat.forget_BddLat_Lat_eq_forget_DistLat_Lat BddDistLatCat.forget_bddLat_latCat_eq_forget_distLatCat_latCat |
| 93 | + |
| 94 | +/-- Constructs an equivalence between bounded distributive lattices from an order isomorphism |
| 95 | +between them. -/ |
| 96 | +@[simps] |
| 97 | +def Iso.mk {α β : BddDistLatCat.{u}} (e : α ≃o β) : α ≅ β where |
| 98 | + hom := (e : BoundedLatticeHom α β) |
| 99 | + inv := (e.symm : BoundedLatticeHom β α) |
| 100 | + hom_inv_id := by ext; exact e.symm_apply_apply _ |
| 101 | + inv_hom_id := by ext; exact e.apply_symm_apply _ |
| 102 | +#align BddDistLat.iso.mk BddDistLatCat.Iso.mk |
| 103 | + |
| 104 | +/-- `OrderDual` as a functor. -/ |
| 105 | +@[simps] |
| 106 | +def dual : BddDistLatCat ⥤ BddDistLatCat where |
| 107 | + obj X := of Xᵒᵈ |
| 108 | + map {X Y} := BoundedLatticeHom.dual |
| 109 | +#align BddDistLat.dual BddDistLatCat.dual |
| 110 | + |
| 111 | +/-- The equivalence between `BddDistLatCat` and itself induced by `OrderDual` both ways. -/ |
| 112 | +@[simps functor inverse] |
| 113 | +def dualEquiv : BddDistLatCat ≌ BddDistLatCat where |
| 114 | + functor := dual |
| 115 | + inverse := dual |
| 116 | + unitIso := NatIso.ofComponents fun X => Iso.mk <| OrderIso.dualDual X |
| 117 | + counitIso := NatIso.ofComponents fun X => Iso.mk <| OrderIso.dualDual X |
| 118 | +#align BddDistLat.dual_equiv BddDistLatCat.dualEquiv |
| 119 | + |
| 120 | +end BddDistLatCat |
| 121 | + |
| 122 | +theorem bddDistLatCat_dual_comp_forget_to_distLatCat : |
| 123 | + BddDistLatCat.dual ⋙ forget₂ BddDistLatCat DistLatCat = |
| 124 | + forget₂ BddDistLatCat DistLatCat ⋙ DistLatCat.dual := |
| 125 | + rfl |
| 126 | +#align BddDistLat_dual_comp_forget_to_DistLat bddDistLatCat_dual_comp_forget_to_distLatCat |
0 commit comments