@@ -238,6 +238,11 @@ theorem singularPart_zero (ν : Measure α) : (0 : Measure α).singularPart ν =
238
238
singularPart_eq_zero_of_ac (AbsolutelyContinuous.zero _)
239
239
#align measure_theory.measure.singular_part_zero MeasureTheory.Measure.singularPart_zero
240
240
241
+ @[simp]
242
+ lemma singularPart_zero_right (μ : Measure α) : μ.singularPart 0 = μ := by
243
+ conv_rhs => rw [haveLebesgueDecomposition_add μ 0 ]
244
+ simp
245
+
241
246
lemma singularPart_eq_zero (μ ν : Measure α) [μ.HaveLebesgueDecomposition ν] :
242
247
μ.singularPart ν = 0 ↔ μ ≪ ν := by
243
248
have h_dec := haveLebesgueDecomposition_add μ ν
@@ -306,6 +311,12 @@ lemma singularPart_eq_self [μ.HaveLebesgueDecomposition ν] : μ.singularPart
306
311
· conv_rhs => rw [h_dec]
307
312
rw [(withDensity_rnDeriv_eq_zero _ _).mpr h, add_zero]
308
313
314
+ @[simp]
315
+ lemma singularPart_singularPart (μ ν : Measure α) :
316
+ (μ.singularPart ν).singularPart ν = μ.singularPart ν := by
317
+ rw [Measure.singularPart_eq_self]
318
+ exact Measure.mutuallySingular_singularPart _ _
319
+
309
320
instance singularPart.instIsFiniteMeasure [IsFiniteMeasure μ] :
310
321
IsFiniteMeasure (μ.singularPart ν) :=
311
322
isFiniteMeasure_of_le μ <| singularPart_le μ ν
@@ -462,6 +473,16 @@ theorem singularPart_add (μ₁ μ₂ ν : Measure α) [HaveLebesgueDecompositio
462
473
← haveLebesgueDecomposition_add μ₂ ν]
463
474
#align measure_theory.measure.singular_part_add MeasureTheory.Measure.singularPart_add
464
475
476
+ lemma singularPart_restrict (μ ν : Measure α) [HaveLebesgueDecomposition μ ν]
477
+ {s : Set α} (hs : MeasurableSet s) :
478
+ (μ.restrict s).singularPart ν = (μ.singularPart ν).restrict s := by
479
+ refine (Measure.eq_singularPart (f := s.indicator (μ.rnDeriv ν)) ?_ ?_ ?_).symm
480
+ · exact (μ.measurable_rnDeriv ν).indicator hs
481
+ · exact (Measure.mutuallySingular_singularPart μ ν).restrict s
482
+ · ext t
483
+ rw [withDensity_indicator hs, ← restrict_withDensity hs, ← Measure.restrict_add,
484
+ ← μ.haveLebesgueDecomposition_add ν]
485
+
465
486
/-- Given measures `μ` and `ν`, if `s` is a measure mutually singular to `ν` and `f` is a
466
487
measurable function such that `μ = s + fν`, then `f = μ.rnDeriv ν`.
467
488
@@ -545,6 +566,14 @@ theorem rnDeriv_withDensity (ν : Measure α) [SigmaFinite ν] {f : α → ℝ
545
566
rnDeriv_withDensity₀ ν hf.aemeasurable
546
567
#align measure_theory.measure.rn_deriv_with_density MeasureTheory.Measure.rnDeriv_withDensity
547
568
569
+ lemma rnDeriv_restrict (μ ν : Measure α) [HaveLebesgueDecomposition μ ν] [SigmaFinite ν]
570
+ {s : Set α} (hs : MeasurableSet s) :
571
+ (μ.restrict s).rnDeriv ν =ᵐ[ν] s.indicator (μ.rnDeriv ν) := by
572
+ refine (eq_rnDeriv (s := (μ.restrict s).singularPart ν)
573
+ ((measurable_rnDeriv _ _).indicator hs) (mutuallySingular_singularPart _ _) ?_).symm
574
+ rw [singularPart_restrict _ _ hs, withDensity_indicator hs, ← restrict_withDensity hs,
575
+ ← Measure.restrict_add, ← μ.haveLebesgueDecomposition_add ν]
576
+
548
577
/-- The Radon-Nikodym derivative of the restriction of a measure to a measurable set is the
549
578
indicator function of this set. -/
550
579
theorem rnDeriv_restrict_self (ν : Measure α) [SigmaFinite ν] {s : Set α} (hs : MeasurableSet s) :
0 commit comments