Skip to content

Commit b990f0e

Browse files
committed
chore(CategoryTheory/Category): address some porting notes (#16095)
1 parent 326efbc commit b990f0e

File tree

3 files changed

+2
-15
lines changed

3 files changed

+2
-15
lines changed

Mathlib/CategoryTheory/Category/Pairwise.lean

Lines changed: 1 addition & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -109,15 +109,11 @@ def diagramMap : ∀ {o₁ o₂ : Pairwise ι} (_ : o₁ ⟶ o₂), diagramObj U
109109
| _, _, left _ _ => homOfLE inf_le_left
110110
| _, _, right _ _ => homOfLE inf_le_right
111111

112-
-- Porting note: the fields map_id and map_comp were filled by hand, as generating them by `aesop`
113-
-- causes a PANIC.
114112
/-- Given a function `U : ι → α` for `[SemilatticeInf α]`, we obtain a functor `Pairwise ι ⥤ α`,
115113
sending `single i` to `U i` and `pair i j` to `U i ⊓ U j`,
116114
and the morphisms to the obvious inequalities.
117115
-/
118-
-- Porting note: We want `@[simps]` here, but this causes a PANIC in the linter.
119-
-- (Which, worryingly, does not cause a linter failure!)
120-
-- @[simps]
116+
@[simps]
121117
def diagram : Pairwise ι ⥤ α where
122118
obj := diagramObj U
123119
map := diagramMap U

Mathlib/CategoryTheory/Category/PartialFun.lean

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -46,8 +46,6 @@ instance : CoeSort PartialFun Type* :=
4646
def of : Type* → PartialFun :=
4747
id
4848

49-
-- Porting note: removed this lemma which is useless because of the expansion of coercions
50-
5149
instance : Inhabited PartialFun :=
5250
Type*⟩
5351

Mathlib/CategoryTheory/Category/Preorder.lean

Lines changed: 1 addition & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -85,14 +85,7 @@ theorem leOfHom {x y : X} (h : x ⟶ y) : x ≤ y :=
8585
@[nolint defLemma, inherit_doc leOfHom]
8686
abbrev _root_.Quiver.Hom.le := @leOfHom
8787

88-
-- Porting note: why does this lemma exist? With proof irrelevance, we don't need to simplify proofs
89-
-- @[simp]
90-
theorem leOfHom_homOfLE {x y : X} (h : x ≤ y) : h.hom.le = h :=
91-
rfl
92-
93-
-- Porting note: linter gives: "Left-hand side does not simplify, when using the simp lemma on
94-
-- itself. This usually means that it will never apply." removing simp? It doesn't fire
95-
-- @[simp]
88+
@[simp]
9689
theorem homOfLE_leOfHom {x y : X} (h : x ⟶ y) : h.le.hom = h :=
9790
rfl
9891

0 commit comments

Comments
 (0)