@@ -283,7 +283,7 @@ def reindexEquiv (e : n ≃ p) (t : TransvectionStruct n R) : TransvectionStruct
283
283
variable [Fintype n] [Fintype p]
284
284
285
285
theorem toMatrix_reindexEquiv (e : n ≃ p) (t : TransvectionStruct n R) :
286
- (t.reindexEquiv e).toMatrix = reindexAlgEquiv R e t.toMatrix := by
286
+ (t.reindexEquiv e).toMatrix = reindexAlgEquiv R _ e t.toMatrix := by
287
287
rcases t with ⟨t_i, t_j, _⟩
288
288
ext a b
289
289
simp only [reindexEquiv, transvection, mul_boole, Algebra.id.smul_eq_mul, toMatrix_mk,
@@ -292,12 +292,12 @@ theorem toMatrix_reindexEquiv (e : n ≃ p) (t : TransvectionStruct n R) :
292
292
simp [ha, hb, hab, ← e.apply_eq_iff_eq_symm_apply, stdBasisMatrix]
293
293
294
294
theorem toMatrix_reindexEquiv_prod (e : n ≃ p) (L : List (TransvectionStruct n R)) :
295
- (L.map (toMatrix ∘ reindexEquiv e)).prod = reindexAlgEquiv R e (L.map toMatrix).prod := by
295
+ (L.map (toMatrix ∘ reindexEquiv e)).prod = reindexAlgEquiv R _ e (L.map toMatrix).prod := by
296
296
induction' L with t L IH
297
297
· simp
298
298
· simp only [toMatrix_reindexEquiv, IH, Function.comp_apply, List.prod_cons,
299
299
reindexAlgEquiv_apply, List.map]
300
- exact (reindexAlgEquiv_mul _ _ _ _).symm
300
+ exact (reindexAlgEquiv_mul R _ _ _ _).symm
301
301
302
302
end TransvectionStruct
303
303
@@ -616,18 +616,18 @@ theorem reindex_exists_list_transvec_mul_mul_list_transvec_eq_diagonal (M : Matr
616
616
(e : p ≃ n)
617
617
(H :
618
618
∃ (L L' : List (TransvectionStruct n 𝕜)) (D : n → 𝕜),
619
- (L.map toMatrix).prod * Matrix.reindexAlgEquiv 𝕜 e M * (L'.map toMatrix).prod =
619
+ (L.map toMatrix).prod * Matrix.reindexAlgEquiv 𝕜 _ e M * (L'.map toMatrix).prod =
620
620
diagonal D) :
621
621
∃ (L L' : List (TransvectionStruct p 𝕜)) (D : p → 𝕜),
622
622
(L.map toMatrix).prod * M * (L'.map toMatrix).prod = diagonal D := by
623
623
rcases H with ⟨L₀, L₀', D₀, h₀⟩
624
624
refine ⟨L₀.map (reindexEquiv e.symm), L₀'.map (reindexEquiv e.symm), D₀ ∘ e, ?_⟩
625
- have : M = reindexAlgEquiv 𝕜 e.symm (reindexAlgEquiv 𝕜 e M) := by
625
+ have : M = reindexAlgEquiv 𝕜 _ e.symm (reindexAlgEquiv 𝕜 _ e M) := by
626
626
simp only [Equiv.symm_symm, submatrix_submatrix, reindex_apply, submatrix_id_id,
627
627
Equiv.symm_comp_self, reindexAlgEquiv_apply]
628
628
rw [this]
629
629
simp only [toMatrix_reindexEquiv_prod, List.map_map, reindexAlgEquiv_apply]
630
- simp only [← reindexAlgEquiv_apply, ← reindexAlgEquiv_mul, h₀]
630
+ simp only [← reindexAlgEquiv_apply 𝕜 , ← reindexAlgEquiv_mul, h₀]
631
631
simp only [Equiv.symm_symm, reindex_apply, submatrix_diagonal_equiv, reindexAlgEquiv_apply]
632
632
633
633
/-- Any matrix can be reduced to diagonal form by elementary operations. Formulated here on `Type 0`
0 commit comments