Skip to content

Commit ba9f2e5

Browse files
committed
chore: bump dependencies (#10315)
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
1 parent 8857f4e commit ba9f2e5

34 files changed

+60
-95
lines changed

Archive/Imo/Imo1981Q3.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ variable {K : ℕ} (HK : N < fib K + fib (K + 1)) {N}
149149
theorem m_n_bounds {m n : ℕ} (h1 : NatPredicate N m n) : m ≤ fib K ∧ n ≤ fib (K + 1) := by
150150
obtain ⟨k : ℕ, hm : m = fib k, hn : n = fib (k + 1)⟩ := h1.imp_fib m
151151
by_cases h2 : k < K + 1
152-
· have h3 : k ≤ K := lt_succ_iff.mp h2
152+
· have h3 : k ≤ K := Nat.lt_succ_iff.mp h2
153153
constructor
154154
· calc
155155
m = fib k := hm

Mathlib/Combinatorics/Additive/Behrend.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -241,7 +241,7 @@ that we then optimize by tweaking the parameters. The (almost) optimal parameter
241241
theorem exists_large_sphere_aux (n d : ℕ) : ∃ k ∈ range (n * (d - 1) ^ 2 + 1),
242242
(↑(d ^ n) / ((n * (d - 1) ^ 2 :) + 1) : ℝ) ≤ (sphere n d k).card := by
243243
refine' exists_le_card_fiber_of_nsmul_le_card_of_maps_to (fun x hx => _) nonempty_range_succ _
244-
· rw [mem_range, lt_succ_iff]
244+
· rw [mem_range, Nat.lt_succ_iff]
245245
exact sum_sq_le_of_mem_box hx
246246
· rw [card_range, _root_.nsmul_eq_mul, mul_div_assoc', cast_add_one, mul_div_cancel_left,
247247
card_box]

Mathlib/Combinatorics/Quiver/Arborescence.lean

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,6 @@ Authors: David Wärn
55
-/
66
import Mathlib.Combinatorics.Quiver.Path
77
import Mathlib.Combinatorics.Quiver.Subquiver
8-
import Mathlib.Data.Nat.Defs
98
import Mathlib.Order.WellFounded
109

1110
#align_import combinatorics.quiver.arborescence from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e"

Mathlib/Combinatorics/SetFamily/LYM.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -242,7 +242,7 @@ theorem IsAntichain.sperner [Fintype α] {𝒜 : Finset (Finset α)}
242242
rw [mem_range] at hr
243243
refine' div_le_div_of_le_left _ _ _ <;> norm_cast
244244
· exact Nat.zero_le _
245-
· exact choose_pos (lt_succ_iff.1 hr)
245+
· exact choose_pos (Nat.lt_succ_iff.1 hr)
246246
· exact choose_le_middle _ _
247247
#align finset.is_antichain.sperner Finset.IsAntichain.sperner
248248

Mathlib/Combinatorics/SimpleGraph/Regularity/Equitabilise.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -90,7 +90,7 @@ theorem equitabilise_aux (hs : a * m + b * (m + 1) = s.card) :
9090
refine' ⟨R.extend ht.ne_empty sdiff_disjoint (sdiff_sup_cancel hts), _, _, _⟩
9191
· simp only [extend_parts, mem_insert, forall_eq_or_imp, and_iff_left hR₁, htn, hn]
9292
exact ite_eq_or_eq _ _ _
93-
· exact fun x hx => (card_le_card <| sdiff_subset _ _).trans (lt_succ_iff.1 <| h _ hx)
93+
· exact fun x hx => (card_le_card <| sdiff_subset _ _).trans (Nat.lt_succ_iff.1 <| h _ hx)
9494
simp_rw [extend_parts, filter_insert, htn, m.succ_ne_self.symm.ite_eq_right_iff]
9595
split_ifs with ha
9696
· rw [hR₃, if_pos ha]

Mathlib/Computability/Ackermann.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -323,11 +323,11 @@ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) :
323323
apply add_lt_ack
324324
-- Left projection:
325325
· refine' ⟨0, fun n => _⟩
326-
rw [ack_zero, lt_succ_iff]
326+
rw [ack_zero, Nat.lt_succ_iff]
327327
exact unpair_left_le n
328328
-- Right projection:
329329
· refine' ⟨0, fun n => _⟩
330-
rw [ack_zero, lt_succ_iff]
330+
rw [ack_zero, Nat.lt_succ_iff]
331331
exact unpair_right_le n
332332
all_goals cases' IHf with a ha; cases' IHg with b hb
333333
-- Pairing:

Mathlib/Computability/PartrecCode.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1106,7 +1106,7 @@ theorem evaln_prim : Primrec fun a : (ℕ × Code) × ℕ => evaln a.1.1 a.1.2 a
11061106
· simp [evaln]
11071107
let k := k' + 1
11081108
simp only [show k'.succ = k from rfl]
1109-
simp? [Nat.lt_succ_iff] at nk says simp only [List.mem_range, lt_succ_iff] at nk
1109+
simp? [Nat.lt_succ_iff] at nk says simp only [List.mem_range, Nat.lt_succ_iff] at nk
11101110
have hg :
11111111
∀ {k' c' n},
11121112
Nat.pair k' (encode c') < Nat.pair k (encode c) →

Mathlib/Data/List/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -902,7 +902,7 @@ theorem nthLe_cons {l : List α} {a : α} {n} (hl) :
902902
split_ifs with h
903903
· simp [nthLe, h]
904904
cases l
905-
· rw [length_singleton, lt_succ_iff, nonpos_iff_eq_zero] at hl
905+
· rw [length_singleton, Nat.lt_succ_iff, nonpos_iff_eq_zero] at hl
906906
contradiction
907907
cases n
908908
· contradiction
@@ -1292,7 +1292,7 @@ theorem take_one_drop_eq_of_lt_length {l : List α} {n : ℕ} (h : n < l.length)
12921292
· by_cases h₁ : l = []
12931293
· subst h₁
12941294
rw [get_singleton]
1295-
simp only [length_singleton, lt_succ_iff, nonpos_iff_eq_zero] at h
1295+
simp only [length_singleton, Nat.lt_succ_iff, nonpos_iff_eq_zero] at h
12961296
subst h
12971297
simp
12981298
have h₂ := h

Mathlib/Data/List/Intervals.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ theorem filter_le_of_bot {n m : ℕ} (hnm : n < m) : ((Ico n m).filter fun x =>
220220
rw [← filter_lt_of_succ_bot hnm]
221221
exact filter_congr' fun _ _ => by
222222
rw [decide_eq_true_eq, decide_eq_true_eq]
223-
exact lt_succ_iff.symm
223+
exact Nat.lt_succ_iff.symm
224224
#align list.Ico.filter_le_of_bot List.Ico.filter_le_of_bot
225225

226226
/-- For any natural numbers n, a, and b, one of the following holds:

Mathlib/Data/List/NatAntidiagonal.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ def antidiagonal (n : ℕ) : List (ℕ × ℕ) :=
3838
theorem mem_antidiagonal {n : ℕ} {x : ℕ × ℕ} : x ∈ antidiagonal n ↔ x.1 + x.2 = n := by
3939
rw [antidiagonal, mem_map]; constructor
4040
· rintro ⟨i, hi, rfl⟩
41-
rw [mem_range, lt_succ_iff] at hi
41+
rw [mem_range, Nat.lt_succ_iff] at hi
4242
exact add_tsub_cancel_of_le hi
4343
· rintro rfl
4444
refine' ⟨x.fst, _, _⟩
@@ -97,7 +97,7 @@ theorem map_swap_antidiagonal {n : ℕ} :
9797
rw [antidiagonal, map_map, ← List.map_reverse, range_eq_range', reverse_range', ←
9898
range_eq_range', map_map]
9999
apply map_congr
100-
simp (config := { contextual := true }) [Nat.sub_sub_self, lt_succ_iff]
100+
simp (config := { contextual := true }) [Nat.sub_sub_self, Nat.lt_succ_iff]
101101
#align list.nat.map_swap_antidiagonal List.Nat.map_swap_antidiagonal
102102

103103
end Nat

0 commit comments

Comments
 (0)