@@ -30,68 +30,68 @@ section MultiplicationLinear
30
30
31
31
section NonUnital
32
32
33
- variable (π) (π' : Type *) [NonUnitalSeminormedRing π' ]
34
- variable [NormedSpace π π' ] [IsScalarTower π π' π' ] [SMulCommClass π π' π' ]
33
+ variable (π) (R : Type *) [NonUnitalSeminormedRing R ]
34
+ variable [NormedSpace π R ] [IsScalarTower π R R ] [SMulCommClass π R R ]
35
35
36
36
/-- Multiplication in a non-unital normed algebra as a continuous bilinear map. -/
37
- def mul : π' βL[π] π' βL[π] π' :=
38
- (LinearMap.mul π π' ).mkContinuousβ 1 fun x y => by simpa using norm_mul_le x y
37
+ def mul : R βL[π] R βL[π] R :=
38
+ (LinearMap.mul π R ).mkContinuousβ 1 fun x y => by simpa using norm_mul_le x y
39
39
40
40
@[simp]
41
- theorem mul_apply' (x y : π' ) : mul π π' x y = x * y :=
41
+ theorem mul_apply' (x y : R ) : mul π R x y = x * y :=
42
42
rfl
43
43
44
44
@[simp]
45
- theorem opNorm_mul_apply_le (x : π' ) : βmul π π' xβ β€ βxβ :=
45
+ theorem opNorm_mul_apply_le (x : R ) : βmul π R xβ β€ βxβ :=
46
46
opNorm_le_bound _ (norm_nonneg x) (norm_mul_le x)
47
47
48
48
49
- theorem opNorm_mul_le : βmul π π' β β€ 1 :=
49
+ theorem opNorm_mul_le : βmul π R β β€ 1 :=
50
50
LinearMap.mkContinuousβ_norm_le _ zero_le_one _
51
51
52
52
53
- /-- Multiplication on the left in a non-unital normed algebra `π' ` as a non-unital algebra
53
+ /-- Multiplication on the left in a non-unital normed algebra `R ` as a non-unital algebra
54
54
homomorphism into the algebra of *continuous* linear maps. This is the left regular representation
55
55
of `A` acting on itself.
56
56
57
57
This has more algebraic structure than `ContinuousLinearMap.mul`, but there is no longer continuity
58
58
bundled in the first coordinate. An alternative viewpoint is that this upgrades
59
59
`NonUnitalAlgHom.lmul` from a homomorphism into linear maps to a homomorphism into *continuous*
60
60
linear maps. -/
61
- def _root_.NonUnitalAlgHom.Lmul : π' βββ[π] π' βL[π] π' :=
62
- { mul π π' with
61
+ def _root_.NonUnitalAlgHom.Lmul : R βββ[π] R βL[π] R :=
62
+ { mul π R with
63
63
map_mul' := fun _ _ β¦ ext fun _ β¦ mul_assoc _ _ _
64
64
map_zero' := ext fun _ β¦ zero_mul _ }
65
65
66
- variable {π π' } in
66
+ variable {π R } in
67
67
@[simp]
68
- theorem _root_.NonUnitalAlgHom.coe_Lmul : β(NonUnitalAlgHom.Lmul π π' ) = mul π π' :=
68
+ theorem _root_.NonUnitalAlgHom.coe_Lmul : β(NonUnitalAlgHom.Lmul π R ) = mul π R :=
69
69
rfl
70
70
71
71
/-- Simultaneous left- and right-multiplication in a non-unital normed algebra, considered as a
72
72
continuous trilinear map. This is akin to its non-continuous version `LinearMap.mulLeftRight`,
73
73
but there is a minor difference: `LinearMap.mulLeftRight` is uncurried. -/
74
- def mulLeftRight : π' βL[π] π' βL[π] π' βL[π] π' :=
75
- ((compL π π' π' π' ).comp (mul π π' ).flip).flip.comp (mul π π' )
74
+ def mulLeftRight : R βL[π] R βL[π] R βL[π] R :=
75
+ ((compL π R R R ).comp (mul π R ).flip).flip.comp (mul π R )
76
76
77
77
@[simp]
78
- theorem mulLeftRight_apply (x y z : π' ) : mulLeftRight π π' x y z = x * z * y :=
78
+ theorem mulLeftRight_apply (x y z : R ) : mulLeftRight π R x y z = x * z * y :=
79
79
rfl
80
80
81
- theorem opNorm_mulLeftRight_apply_apply_le (x y : π' ) : βmulLeftRight π π' x yβ β€ βxβ * βyβ :=
81
+ theorem opNorm_mulLeftRight_apply_apply_le (x y : R ) : βmulLeftRight π R x yβ β€ βxβ * βyβ :=
82
82
(opNorm_comp_le _ _).trans <|
83
83
(mul_comm _ _).trans_le <|
84
84
mul_le_mul (opNorm_mul_apply_le _ _ _)
85
85
(opNorm_le_bound _ (norm_nonneg _) fun _ => (norm_mul_le _ _).trans_eq (mul_comm _ _))
86
86
(norm_nonneg _) (norm_nonneg _)
87
87
88
- theorem opNorm_mulLeftRight_apply_le (x : π' ) : βmulLeftRight π π' xβ β€ βxβ :=
89
- opNorm_le_bound _ (norm_nonneg x) (opNorm_mulLeftRight_apply_apply_le π π' x)
88
+ theorem opNorm_mulLeftRight_apply_le (x : R ) : βmulLeftRight π R xβ β€ βxβ :=
89
+ opNorm_le_bound _ (norm_nonneg x) (opNorm_mulLeftRight_apply_apply_le π R x)
90
90
91
91
set_option maxSynthPendingDepth 2 in
92
92
theorem opNorm_mulLeftRight_le :
93
- βmulLeftRight π π' β β€ 1 :=
94
- opNorm_le_bound _ zero_le_one fun x => (one_mul βxβ).symm βΈ opNorm_mulLeftRight_apply_le π π' x
93
+ βmulLeftRight π R β β€ 1 :=
94
+ opNorm_le_bound _ zero_le_one fun x => (one_mul βxβ).symm βΈ opNorm_mulLeftRight_apply_le π R x
95
95
96
96
97
97
/-- This is a mixin class for non-unital normed algebras which states that the left-regular
@@ -104,39 +104,39 @@ This is a useful class because it gives rise to a nice norm on the unitization;
104
104
a Cβ-norm when the norm on `A` is a Cβ-norm. -/
105
105
class _root_.RegularNormedAlgebra : Prop where
106
106
/-- The left regular representation of the algebra on itself is an isometry. -/
107
- isometry_mul' : Isometry (mul π π' )
107
+ isometry_mul' : Isometry (mul π R )
108
108
109
109
/-- Every (unital) normed algebra such that `β1β = 1` is a `RegularNormedAlgebra`. -/
110
- instance _root_.NormedAlgebra.instRegularNormedAlgebra {π π' : Type *} [NontriviallyNormedField π]
111
- [SeminormedRing π' ] [NormedAlgebra π π' ] [NormOneClass π' ] : RegularNormedAlgebra π π' where
112
- isometry_mul' := AddMonoidHomClass.isometry_of_norm (mul π π' ) <|
110
+ instance _root_.NormedAlgebra.instRegularNormedAlgebra {π R : Type *} [NontriviallyNormedField π]
111
+ [SeminormedRing R ] [NormedAlgebra π R ] [NormOneClass R ] : RegularNormedAlgebra π R where
112
+ isometry_mul' := AddMonoidHomClass.isometry_of_norm (mul π R ) <|
113
113
fun x => le_antisymm (opNorm_mul_apply_le _ _ _) <| by
114
- convert ratio_le_opNorm ((mul π π' ) x) (1 : π' )
114
+ convert ratio_le_opNorm ((mul π R ) x) (1 : R )
115
115
simp [norm_one]
116
116
117
- variable [RegularNormedAlgebra π π' ]
117
+ variable [RegularNormedAlgebra π R ]
118
118
119
- lemma isometry_mul : Isometry (mul π π' ) :=
119
+ lemma isometry_mul : Isometry (mul π R ) :=
120
120
RegularNormedAlgebra.isometry_mul'
121
121
122
122
@[simp]
123
- lemma opNorm_mul_apply (x : π' ) : βmul π π' xβ = βxβ :=
124
- (AddMonoidHomClass.isometry_iff_norm (mul π π' )).mp (isometry_mul π π' ) x
123
+ lemma opNorm_mul_apply (x : R ) : βmul π R xβ = βxβ :=
124
+ (AddMonoidHomClass.isometry_iff_norm (mul π R )).mp (isometry_mul π R ) x
125
125
126
126
127
127
@[simp]
128
- lemma opNNNorm_mul_apply (x : π' ) : βmul π π' xββ = βxββ :=
129
- Subtype.ext <| opNorm_mul_apply π π' x
128
+ lemma opNNNorm_mul_apply (x : R ) : βmul π R xββ = βxββ :=
129
+ Subtype.ext <| opNorm_mul_apply π R x
130
130
131
131
132
132
/-- Multiplication in a normed algebra as a linear isometry to the space of
133
133
continuous linear maps. -/
134
- def mulβα΅’ : π' ββα΅’[π] π' βL[π] π' where
135
- toLinearMap := mul π π'
136
- norm_map' x := opNorm_mul_apply π π' x
134
+ def mulβα΅’ : R ββα΅’[π] R βL[π] R where
135
+ toLinearMap := mul π R
136
+ norm_map' x := opNorm_mul_apply π R x
137
137
138
138
@[simp]
139
- theorem coe_mulβα΅’ : β(mulβα΅’ π π' ) = mul π π' :=
139
+ theorem coe_mulβα΅’ : β(mulβα΅’ π R ) = mul π R :=
140
140
rfl
141
141
142
142
end NonUnital
@@ -180,19 +180,19 @@ end MultiplicationLinear
180
180
181
181
section SMulLinear
182
182
183
- variable (π) (π' : Type *) [NormedField π' ]
184
- variable [NormedAlgebra π π' ] [NormedSpace π' E] [IsScalarTower π π' E]
183
+ variable (π) (R : Type *) [NormedField R ]
184
+ variable [NormedAlgebra π R ] [NormedSpace R E] [IsScalarTower π R E]
185
185
186
186
/-- Scalar multiplication as a continuous bilinear map. -/
187
- def lsmul : π' βL[π] E βL[π] E :=
188
- ((Algebra.lsmul π π E).toLinearMap : π' ββ[π] E ββ[π] E).mkContinuousβ 1 fun c x => by
187
+ def lsmul : R βL[π] E βL[π] E :=
188
+ ((Algebra.lsmul π π E).toLinearMap : R ββ[π] E ββ[π] E).mkContinuousβ 1 fun c x => by
189
189
simpa only [one_mul] using norm_smul_le c x
190
190
191
191
@[simp]
192
- theorem lsmul_apply (c : π' ) (x : E) : lsmul π π' c x = c β’ x :=
192
+ theorem lsmul_apply (c : R ) (x : E) : lsmul π R c x = c β’ x :=
193
193
rfl
194
194
195
- variable {π' }
195
+ variable {R }
196
196
197
197
theorem norm_toSpanSingleton (x : E) : βtoSpanSingleton π xβ = βxβ := by
198
198
refine opNorm_eq_of_bounds (norm_nonneg _) (fun x => ?_) fun N _ h => ?_
@@ -203,12 +203,12 @@ theorem norm_toSpanSingleton (x : E) : βtoSpanSingleton π xβ = βxβ :=
203
203
204
204
variable {π}
205
205
206
- theorem opNorm_lsmul_apply_le (x : π' ) : β(lsmul π π' x : E βL[π] E)β β€ βxβ :=
206
+ theorem opNorm_lsmul_apply_le (x : R ) : β(lsmul π R x : E βL[π] E)β β€ βxβ :=
207
207
ContinuousLinearMap.opNorm_le_bound _ (norm_nonneg x) fun y => norm_smul_le x y
208
208
209
209
210
210
/-- The norm of `lsmul` is at most 1 in any semi-normed group. -/
211
- theorem opNorm_lsmul_le : β(lsmul π π' : π' βL[π] E βL[π] E)β β€ 1 := by
211
+ theorem opNorm_lsmul_le : β(lsmul π R : R βL[π] E βL[π] E)β β€ 1 := by
212
212
refine ContinuousLinearMap.opNorm_le_bound _ zero_le_one fun x => ?_
213
213
simp_rw [one_mul]
214
214
exact opNorm_lsmul_apply_le _
@@ -225,21 +225,21 @@ section Normed
225
225
namespace ContinuousLinearMap
226
226
227
227
variable [NormedAddCommGroup E] [NormedSpace π E]
228
- variable (π) (π' : Type *)
228
+ variable (π) (R : Type *)
229
229
230
230
section
231
231
232
- variable [NonUnitalNormedRing π' ] [NormedSpace π π' ] [IsScalarTower π π' π' ]
233
- variable [SMulCommClass π π' π' ] [RegularNormedAlgebra π π' ] [Nontrivial π' ]
232
+ variable [NonUnitalNormedRing R ] [NormedSpace π R ] [IsScalarTower π R R ]
233
+ variable [SMulCommClass π R R ] [RegularNormedAlgebra π R ] [Nontrivial R ]
234
234
235
235
@[simp]
236
- theorem opNorm_mul : βmul π π' β = 1 :=
237
- (mulβα΅’ π π' ).norm_toContinuousLinearMap
236
+ theorem opNorm_mul : βmul π R β = 1 :=
237
+ (mulβα΅’ π R ).norm_toContinuousLinearMap
238
238
239
239
240
240
@[simp]
241
- theorem opNNNorm_mul : βmul π π' ββ = 1 :=
242
- Subtype.ext <| opNorm_mul π π'
241
+ theorem opNNNorm_mul : βmul π R ββ = 1 :=
242
+ Subtype.ext <| opNorm_mul π R
243
243
244
244
245
245
end
248
248
249
249
This is `ContinuousLinearMap.opNorm_lsmul_le` as an equality. -/
250
250
@[simp]
251
- theorem opNorm_lsmul [NormedField π' ] [NormedAlgebra π π' ] [NormedSpace π' E]
252
- [IsScalarTower π π' E] [Nontrivial E] : β(lsmul π π' : π' βL[π] E βL[π] E)β = 1 := by
251
+ theorem opNorm_lsmul [NormedField R ] [NormedAlgebra π R ] [NormedSpace R E]
252
+ [IsScalarTower π R E] [Nontrivial E] : β(lsmul π R : R βL[π] E βL[π] E)β = 1 := by
253
253
refine ContinuousLinearMap.opNorm_eq_of_bounds zero_le_one (fun x => ?_) fun N _ h => ?_
254
254
Β· rw [one_mul]
255
255
apply opNorm_lsmul_apply_le
0 commit comments