Skip to content

Commit bbbf03a

Browse files
committed
chore(Analysis/NormedSpace/OperatorNorm/Mul): don't use π•œ' for a ring (#21506)
I am finding it particularly confusing to use `π•œsomething` for a ring when `π•œ` is already used for a type playing a completely different role. From LeanAPAP
1 parent b532ac9 commit bbbf03a

File tree

1 file changed

+52
-52
lines changed
  • Mathlib/Analysis/NormedSpace/OperatorNorm

1 file changed

+52
-52
lines changed

β€ŽMathlib/Analysis/NormedSpace/OperatorNorm/Mul.leanβ€Ž

Lines changed: 52 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -30,68 +30,68 @@ section MultiplicationLinear
3030

3131
section NonUnital
3232

33-
variable (π•œ) (π•œ' : Type*) [NonUnitalSeminormedRing π•œ']
34-
variable [NormedSpace π•œ π•œ'] [IsScalarTower π•œ π•œ' π•œ'] [SMulCommClass π•œ π•œ' π•œ']
33+
variable (π•œ) (R : Type*) [NonUnitalSeminormedRing R]
34+
variable [NormedSpace π•œ R] [IsScalarTower π•œ R R] [SMulCommClass π•œ R R]
3535

3636
/-- Multiplication in a non-unital normed algebra as a continuous bilinear map. -/
37-
def mul : π•œ' β†’L[π•œ] π•œ' β†’L[π•œ] π•œ' :=
38-
(LinearMap.mul π•œ π•œ').mkContinuousβ‚‚ 1 fun x y => by simpa using norm_mul_le x y
37+
def mul : R β†’L[π•œ] R β†’L[π•œ] R :=
38+
(LinearMap.mul π•œ R).mkContinuousβ‚‚ 1 fun x y => by simpa using norm_mul_le x y
3939

4040
@[simp]
41-
theorem mul_apply' (x y : π•œ') : mul π•œ π•œ' x y = x * y :=
41+
theorem mul_apply' (x y : R) : mul π•œ R x y = x * y :=
4242
rfl
4343

4444
@[simp]
45-
theorem opNorm_mul_apply_le (x : π•œ') : β€–mul π•œ π•œ' xβ€– ≀ β€–xβ€– :=
45+
theorem opNorm_mul_apply_le (x : R) : β€–mul π•œ R xβ€– ≀ β€–xβ€– :=
4646
opNorm_le_bound _ (norm_nonneg x) (norm_mul_le x)
4747

4848

49-
theorem opNorm_mul_le : β€–mul π•œ π•œ'β€– ≀ 1 :=
49+
theorem opNorm_mul_le : β€–mul π•œ Rβ€– ≀ 1 :=
5050
LinearMap.mkContinuousβ‚‚_norm_le _ zero_le_one _
5151

5252

53-
/-- Multiplication on the left in a non-unital normed algebra `π•œ'` as a non-unital algebra
53+
/-- Multiplication on the left in a non-unital normed algebra `R` as a non-unital algebra
5454
homomorphism into the algebra of *continuous* linear maps. This is the left regular representation
5555
of `A` acting on itself.
5656
5757
This has more algebraic structure than `ContinuousLinearMap.mul`, but there is no longer continuity
5858
bundled in the first coordinate. An alternative viewpoint is that this upgrades
5959
`NonUnitalAlgHom.lmul` from a homomorphism into linear maps to a homomorphism into *continuous*
6060
linear maps. -/
61-
def _root_.NonUnitalAlgHom.Lmul : π•œ' →ₙₐ[π•œ] π•œ' β†’L[π•œ] π•œ' :=
62-
{ mul π•œ π•œ' with
61+
def _root_.NonUnitalAlgHom.Lmul : R →ₙₐ[π•œ] R β†’L[π•œ] R :=
62+
{ mul π•œ R with
6363
map_mul' := fun _ _ ↦ ext fun _ ↦ mul_assoc _ _ _
6464
map_zero' := ext fun _ ↦ zero_mul _ }
6565

66-
variable {π•œ π•œ'} in
66+
variable {π•œ R} in
6767
@[simp]
68-
theorem _root_.NonUnitalAlgHom.coe_Lmul : ⇑(NonUnitalAlgHom.Lmul π•œ π•œ') = mul π•œ π•œ' :=
68+
theorem _root_.NonUnitalAlgHom.coe_Lmul : ⇑(NonUnitalAlgHom.Lmul π•œ R) = mul π•œ R :=
6969
rfl
7070

7171
/-- Simultaneous left- and right-multiplication in a non-unital normed algebra, considered as a
7272
continuous trilinear map. This is akin to its non-continuous version `LinearMap.mulLeftRight`,
7373
but there is a minor difference: `LinearMap.mulLeftRight` is uncurried. -/
74-
def mulLeftRight : π•œ' β†’L[π•œ] π•œ' β†’L[π•œ] π•œ' β†’L[π•œ] π•œ' :=
75-
((compL π•œ π•œ' π•œ' π•œ').comp (mul π•œ π•œ').flip).flip.comp (mul π•œ π•œ')
74+
def mulLeftRight : R β†’L[π•œ] R β†’L[π•œ] R β†’L[π•œ] R :=
75+
((compL π•œ R R R).comp (mul π•œ R).flip).flip.comp (mul π•œ R)
7676

7777
@[simp]
78-
theorem mulLeftRight_apply (x y z : π•œ') : mulLeftRight π•œ π•œ' x y z = x * z * y :=
78+
theorem mulLeftRight_apply (x y z : R) : mulLeftRight π•œ R x y z = x * z * y :=
7979
rfl
8080

81-
theorem opNorm_mulLeftRight_apply_apply_le (x y : π•œ') : β€–mulLeftRight π•œ π•œ' x yβ€– ≀ β€–xβ€– * β€–yβ€– :=
81+
theorem opNorm_mulLeftRight_apply_apply_le (x y : R) : β€–mulLeftRight π•œ R x yβ€– ≀ β€–xβ€– * β€–yβ€– :=
8282
(opNorm_comp_le _ _).trans <|
8383
(mul_comm _ _).trans_le <|
8484
mul_le_mul (opNorm_mul_apply_le _ _ _)
8585
(opNorm_le_bound _ (norm_nonneg _) fun _ => (norm_mul_le _ _).trans_eq (mul_comm _ _))
8686
(norm_nonneg _) (norm_nonneg _)
8787

88-
theorem opNorm_mulLeftRight_apply_le (x : π•œ') : β€–mulLeftRight π•œ π•œ' xβ€– ≀ β€–xβ€– :=
89-
opNorm_le_bound _ (norm_nonneg x) (opNorm_mulLeftRight_apply_apply_le π•œ π•œ' x)
88+
theorem opNorm_mulLeftRight_apply_le (x : R) : β€–mulLeftRight π•œ R xβ€– ≀ β€–xβ€– :=
89+
opNorm_le_bound _ (norm_nonneg x) (opNorm_mulLeftRight_apply_apply_le π•œ R x)
9090

9191
set_option maxSynthPendingDepth 2 in
9292
theorem opNorm_mulLeftRight_le :
93-
β€–mulLeftRight π•œ π•œ'β€– ≀ 1 :=
94-
opNorm_le_bound _ zero_le_one fun x => (one_mul β€–xβ€–).symm β–Έ opNorm_mulLeftRight_apply_le π•œ π•œ' x
93+
β€–mulLeftRight π•œ Rβ€– ≀ 1 :=
94+
opNorm_le_bound _ zero_le_one fun x => (one_mul β€–xβ€–).symm β–Έ opNorm_mulLeftRight_apply_le π•œ R x
9595

9696

9797
/-- This is a mixin class for non-unital normed algebras which states that the left-regular
@@ -104,39 +104,39 @@ This is a useful class because it gives rise to a nice norm on the unitization;
104104
a C⋆-norm when the norm on `A` is a C⋆-norm. -/
105105
class _root_.RegularNormedAlgebra : Prop where
106106
/-- The left regular representation of the algebra on itself is an isometry. -/
107-
isometry_mul' : Isometry (mul π•œ π•œ')
107+
isometry_mul' : Isometry (mul π•œ R)
108108

109109
/-- Every (unital) normed algebra such that `β€–1β€– = 1` is a `RegularNormedAlgebra`. -/
110-
instance _root_.NormedAlgebra.instRegularNormedAlgebra {π•œ π•œ' : Type*} [NontriviallyNormedField π•œ]
111-
[SeminormedRing π•œ'] [NormedAlgebra π•œ π•œ'] [NormOneClass π•œ'] : RegularNormedAlgebra π•œ π•œ' where
112-
isometry_mul' := AddMonoidHomClass.isometry_of_norm (mul π•œ π•œ') <|
110+
instance _root_.NormedAlgebra.instRegularNormedAlgebra {π•œ R : Type*} [NontriviallyNormedField π•œ]
111+
[SeminormedRing R] [NormedAlgebra π•œ R] [NormOneClass R] : RegularNormedAlgebra π•œ R where
112+
isometry_mul' := AddMonoidHomClass.isometry_of_norm (mul π•œ R) <|
113113
fun x => le_antisymm (opNorm_mul_apply_le _ _ _) <| by
114-
convert ratio_le_opNorm ((mul π•œ π•œ') x) (1 : π•œ')
114+
convert ratio_le_opNorm ((mul π•œ R) x) (1 : R)
115115
simp [norm_one]
116116

117-
variable [RegularNormedAlgebra π•œ π•œ']
117+
variable [RegularNormedAlgebra π•œ R]
118118

119-
lemma isometry_mul : Isometry (mul π•œ π•œ') :=
119+
lemma isometry_mul : Isometry (mul π•œ R) :=
120120
RegularNormedAlgebra.isometry_mul'
121121

122122
@[simp]
123-
lemma opNorm_mul_apply (x : π•œ') : β€–mul π•œ π•œ' xβ€– = β€–xβ€– :=
124-
(AddMonoidHomClass.isometry_iff_norm (mul π•œ π•œ')).mp (isometry_mul π•œ π•œ') x
123+
lemma opNorm_mul_apply (x : R) : β€–mul π•œ R xβ€– = β€–xβ€– :=
124+
(AddMonoidHomClass.isometry_iff_norm (mul π•œ R)).mp (isometry_mul π•œ R) x
125125

126126

127127
@[simp]
128-
lemma opNNNorm_mul_apply (x : π•œ') : β€–mul π•œ π•œ' xβ€–β‚Š = β€–xβ€–β‚Š :=
129-
Subtype.ext <| opNorm_mul_apply π•œ π•œ' x
128+
lemma opNNNorm_mul_apply (x : R) : β€–mul π•œ R xβ€–β‚Š = β€–xβ€–β‚Š :=
129+
Subtype.ext <| opNorm_mul_apply π•œ R x
130130

131131

132132
/-- Multiplication in a normed algebra as a linear isometry to the space of
133133
continuous linear maps. -/
134-
def mulβ‚—α΅’ : π•œ' β†’β‚—α΅’[π•œ] π•œ' β†’L[π•œ] π•œ' where
135-
toLinearMap := mul π•œ π•œ'
136-
norm_map' x := opNorm_mul_apply π•œ π•œ' x
134+
def mulβ‚—α΅’ : R β†’β‚—α΅’[π•œ] R β†’L[π•œ] R where
135+
toLinearMap := mul π•œ R
136+
norm_map' x := opNorm_mul_apply π•œ R x
137137

138138
@[simp]
139-
theorem coe_mulβ‚—α΅’ : ⇑(mulβ‚—α΅’ π•œ π•œ') = mul π•œ π•œ' :=
139+
theorem coe_mulβ‚—α΅’ : ⇑(mulβ‚—α΅’ π•œ R) = mul π•œ R :=
140140
rfl
141141

142142
end NonUnital
@@ -180,19 +180,19 @@ end MultiplicationLinear
180180

181181
section SMulLinear
182182

183-
variable (π•œ) (π•œ' : Type*) [NormedField π•œ']
184-
variable [NormedAlgebra π•œ π•œ'] [NormedSpace π•œ' E] [IsScalarTower π•œ π•œ' E]
183+
variable (π•œ) (R : Type*) [NormedField R]
184+
variable [NormedAlgebra π•œ R] [NormedSpace R E] [IsScalarTower π•œ R E]
185185

186186
/-- Scalar multiplication as a continuous bilinear map. -/
187-
def lsmul : π•œ' β†’L[π•œ] E β†’L[π•œ] E :=
188-
((Algebra.lsmul π•œ π•œ E).toLinearMap : π•œ' β†’β‚—[π•œ] E β†’β‚—[π•œ] E).mkContinuousβ‚‚ 1 fun c x => by
187+
def lsmul : R β†’L[π•œ] E β†’L[π•œ] E :=
188+
((Algebra.lsmul π•œ π•œ E).toLinearMap : R β†’β‚—[π•œ] E β†’β‚—[π•œ] E).mkContinuousβ‚‚ 1 fun c x => by
189189
simpa only [one_mul] using norm_smul_le c x
190190

191191
@[simp]
192-
theorem lsmul_apply (c : π•œ') (x : E) : lsmul π•œ π•œ' c x = c β€’ x :=
192+
theorem lsmul_apply (c : R) (x : E) : lsmul π•œ R c x = c β€’ x :=
193193
rfl
194194

195-
variable {π•œ'}
195+
variable {R}
196196

197197
theorem norm_toSpanSingleton (x : E) : β€–toSpanSingleton π•œ xβ€– = β€–xβ€– := by
198198
refine opNorm_eq_of_bounds (norm_nonneg _) (fun x => ?_) fun N _ h => ?_
@@ -203,12 +203,12 @@ theorem norm_toSpanSingleton (x : E) : β€–toSpanSingleton π•œ xβ€– = β€–xβ€– :=
203203

204204
variable {π•œ}
205205

206-
theorem opNorm_lsmul_apply_le (x : π•œ') : β€–(lsmul π•œ π•œ' x : E β†’L[π•œ] E)β€– ≀ β€–xβ€– :=
206+
theorem opNorm_lsmul_apply_le (x : R) : β€–(lsmul π•œ R x : E β†’L[π•œ] E)β€– ≀ β€–xβ€– :=
207207
ContinuousLinearMap.opNorm_le_bound _ (norm_nonneg x) fun y => norm_smul_le x y
208208

209209

210210
/-- The norm of `lsmul` is at most 1 in any semi-normed group. -/
211-
theorem opNorm_lsmul_le : β€–(lsmul π•œ π•œ' : π•œ' β†’L[π•œ] E β†’L[π•œ] E)β€– ≀ 1 := by
211+
theorem opNorm_lsmul_le : β€–(lsmul π•œ R : R β†’L[π•œ] E β†’L[π•œ] E)β€– ≀ 1 := by
212212
refine ContinuousLinearMap.opNorm_le_bound _ zero_le_one fun x => ?_
213213
simp_rw [one_mul]
214214
exact opNorm_lsmul_apply_le _
@@ -225,21 +225,21 @@ section Normed
225225
namespace ContinuousLinearMap
226226

227227
variable [NormedAddCommGroup E] [NormedSpace π•œ E]
228-
variable (π•œ) (π•œ' : Type*)
228+
variable (π•œ) (R : Type*)
229229

230230
section
231231

232-
variable [NonUnitalNormedRing π•œ'] [NormedSpace π•œ π•œ'] [IsScalarTower π•œ π•œ' π•œ']
233-
variable [SMulCommClass π•œ π•œ' π•œ'] [RegularNormedAlgebra π•œ π•œ'] [Nontrivial π•œ']
232+
variable [NonUnitalNormedRing R] [NormedSpace π•œ R] [IsScalarTower π•œ R R]
233+
variable [SMulCommClass π•œ R R] [RegularNormedAlgebra π•œ R] [Nontrivial R]
234234

235235
@[simp]
236-
theorem opNorm_mul : β€–mul π•œ π•œ'β€– = 1 :=
237-
(mulβ‚—α΅’ π•œ π•œ').norm_toContinuousLinearMap
236+
theorem opNorm_mul : β€–mul π•œ Rβ€– = 1 :=
237+
(mulβ‚—α΅’ π•œ R).norm_toContinuousLinearMap
238238

239239

240240
@[simp]
241-
theorem opNNNorm_mul : β€–mul π•œ π•œ'β€–β‚Š = 1 :=
242-
Subtype.ext <| opNorm_mul π•œ π•œ'
241+
theorem opNNNorm_mul : β€–mul π•œ Rβ€–β‚Š = 1 :=
242+
Subtype.ext <| opNorm_mul π•œ R
243243

244244

245245
end
@@ -248,8 +248,8 @@ end
248248
249249
This is `ContinuousLinearMap.opNorm_lsmul_le` as an equality. -/
250250
@[simp]
251-
theorem opNorm_lsmul [NormedField π•œ'] [NormedAlgebra π•œ π•œ'] [NormedSpace π•œ' E]
252-
[IsScalarTower π•œ π•œ' E] [Nontrivial E] : β€–(lsmul π•œ π•œ' : π•œ' β†’L[π•œ] E β†’L[π•œ] E)β€– = 1 := by
251+
theorem opNorm_lsmul [NormedField R] [NormedAlgebra π•œ R] [NormedSpace R E]
252+
[IsScalarTower π•œ R E] [Nontrivial E] : β€–(lsmul π•œ R : R β†’L[π•œ] E β†’L[π•œ] E)β€– = 1 := by
253253
refine ContinuousLinearMap.opNorm_eq_of_bounds zero_le_one (fun x => ?_) fun N _ h => ?_
254254
Β· rw [one_mul]
255255
apply opNorm_lsmul_apply_le

0 commit comments

Comments
Β (0)