@@ -50,25 +50,26 @@ theorem isOpen_singleton_iff : IsOpen ({a} : Set Ordinal) ↔ ¬IsLimit a := by
50
50
exact isOpen_Ioo
51
51
· exact (ha ha').elim
52
52
53
+ @[deprecated SuccOrder.nhdsGT (since := "2025-01-05")]
53
54
protected theorem nhdsGT (a : Ordinal) : 𝓝[>] a = ⊥ := SuccOrder.nhdsGT
54
55
55
56
@[deprecated (since := "2024-12-22")] alias nhds_right' := Ordinal.nhdsGT
56
57
57
- -- todo: generalize to a `SuccOrder`
58
- theorem nhdsLT_eq_nhdsNE (a : Ordinal) : 𝓝[<] a = 𝓝[≠] a := by
59
- rw [← nhdsLT_sup_nhdsGT, Ordinal.nhdsGT, sup_bot_eq]
58
+ @[deprecated SuccOrder.nhdsLT_eq_nhdsNE (since := "2025-01-05")]
59
+ theorem nhdsLT_eq_nhdsNE (a : Ordinal) : 𝓝[<] a = 𝓝[≠] a :=
60
+ SuccOrder.nhdsLT_eq_nhdsNE a
60
61
61
62
@[deprecated (since := "2024-12-22")] alias nhds_left'_eq_nhds_ne := nhdsLT_eq_nhdsNE
62
63
63
- -- todo: generalize to a `SuccOrder`
64
- theorem nhdsLE_eq_nhds (a : Ordinal) : 𝓝[≤] a = 𝓝 a := by
65
- rw [← nhdsLE_sup_nhdsGT, SuccOrder.nhdsGT, sup_bot_eq]
64
+ @[deprecated SuccOrder.nhdsLE_eq_nhds (since := "2025-01-05")]
65
+ theorem nhdsLE_eq_nhds (a : Ordinal) : 𝓝[≤] a = 𝓝 a :=
66
+ SuccOrder.nhdsLE_eq_nhds a
66
67
67
68
@[deprecated (since := "2024-12-22")] alias nhds_left_eq_nhds := nhdsLE_eq_nhds
68
69
69
- -- todo: generalize to a `SuccOrder`
70
+ @[deprecated SuccOrder.hasBasis_nhds_Ioc_of_exists_lt (since := "2025-01-05")]
70
71
theorem hasBasis_nhds_Ioc (h : a ≠ 0 ) : (𝓝 a).HasBasis (· < a) (Set.Ioc · a) :=
71
- nhdsLE_eq_nhds a ▸ nhdsLE_basis_of_exists_lt ⟨0 , h.bot_lt ⟩
72
+ SuccOrder.hasBasis_nhds_Ioc_of_exists_lt ⟨0 , Ordinal.pos_iff_ne_zero. 2 h ⟩
72
73
73
74
@[deprecated (since := "2024-12-22")] alias nhdsBasis_Ioc := hasBasis_nhds_Ioc
74
75
@@ -80,7 +81,7 @@ theorem nhds_eq_pure : 𝓝 a = pure a ↔ ¬IsLimit a :=
80
81
theorem isOpen_iff : IsOpen s ↔ ∀ o ∈ s, IsLimit o → ∃ a < o, Set.Ioo a o ⊆ s := by
81
82
refine isOpen_iff_mem_nhds.trans <| forall₂_congr fun o ho => ?_
82
83
by_cases ho' : IsLimit o
83
- · simp only [(hasBasis_nhds_Ioc ho'.ne_zero ).mem_iff, ho', true_implies]
84
+ · simp only [(SuccOrder.hasBasis_nhds_Ioc_of_exists_lt ⟨ 0 , ho'.pos⟩ ).mem_iff, ho', true_implies]
84
85
refine exists_congr fun a => and_congr_right fun ha => ?_
85
86
simp only [← Set.Ioo_insert_right ha, Set.insert_subset_iff, ho, true_and]
86
87
· simp [nhds_eq_pure.2 ho', ho, ho']
@@ -95,8 +96,8 @@ theorem mem_closure_tfae (a : Ordinal.{u}) (s : Set Ordinal) :
95
96
(∀ x hx, f x hx ∈ s) ∧ bsup.{u, u} o f = a,
96
97
∃ (ι : Type u), Nonempty ι ∧ ∃ f : ι → Ordinal, (∀ i, f i ∈ s) ∧ ⨆ i, f i = a] := by
97
98
tfae_have 1 → 2 := by
98
- simp only [mem_closure_iff_nhdsWithin_neBot, inter_comm s, nhdsWithin_inter', nhdsLE_eq_nhds]
99
- exact id
99
+ simpa only [mem_closure_iff_nhdsWithin_neBot, inter_comm s, nhdsWithin_inter',
100
+ SuccOrder.nhdsLE_eq_nhds] using id
100
101
tfae_have 2 → 3
101
102
| h => by
102
103
rcases (s ∩ Iic a).eq_empty_or_nonempty with he | hne
0 commit comments