Skip to content

Commit be97c7f

Browse files
committed
feat: Fin.init and Fin.tail are continuous (#22550)
I needed the continuity of `Fin.init` for the inductive CW structure on the sphere. There the inverses of the characteristic maps are just the projections of the upper and lower hemisphere onto the obvious hyperplane. It was easiest to use `Fin.init` for this.
1 parent 0954888 commit be97c7f

File tree

1 file changed

+28
-0
lines changed

1 file changed

+28
-0
lines changed

Mathlib/Topology/Constructions.lean

Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -824,6 +824,34 @@ theorem Continuous.finInsertNth
824824
@[deprecated (since := "2025-01-02")]
825825
alias Continuous.fin_insertNth := Continuous.finInsertNth
826826

827+
theorem Filter.Tendsto.finInit {f : Y → ∀ j : Fin (n + 1), π j} {l : Filter Y} {x : ∀ j, π j}
828+
(hg : Tendsto f l (𝓝 x)) : Tendsto (fun a ↦ Fin.init (f a)) l (𝓝 <| Fin.init x) :=
829+
tendsto_pi_nhds.2 fun j ↦ apply_nhds hg j.castSucc
830+
831+
@[fun_prop]
832+
theorem ContinuousAt.finInit {f : X → ∀ j : Fin (n + 1), π j} {x : X}
833+
(hf : ContinuousAt f x) : ContinuousAt (fun a ↦ Fin.init (f a)) x :=
834+
hf.tendsto.finInit
835+
836+
@[fun_prop]
837+
theorem Continuous.finInit {f : X → ∀ j : Fin (n + 1), π j} (hf : Continuous f) :
838+
Continuous fun a ↦ Fin.init (f a) :=
839+
continuous_iff_continuousAt.2 fun _ ↦ hf.continuousAt.finInit
840+
841+
theorem Filter.Tendsto.finTail {f : Y → ∀ j : Fin (n + 1), π j} {l : Filter Y} {x : ∀ j, π j}
842+
(hg : Tendsto f l (𝓝 x)) : Tendsto (fun a ↦ Fin.tail (f a)) l (𝓝 <| Fin.tail x) :=
843+
tendsto_pi_nhds.2 fun j ↦ apply_nhds hg j.succ
844+
845+
@[fun_prop]
846+
theorem ContinuousAt.finTail {f : X → ∀ j : Fin (n + 1), π j} {x : X}
847+
(hf : ContinuousAt f x) : ContinuousAt (fun a ↦ Fin.tail (f a)) x :=
848+
hf.tendsto.finTail
849+
850+
@[fun_prop]
851+
theorem Continuous.finTail {f : X → ∀ j : Fin (n + 1), π j} (hf : Continuous f) :
852+
Continuous fun a ↦ Fin.tail (f a) :=
853+
continuous_iff_continuousAt.2 fun _ ↦ hf.continuousAt.finTail
854+
827855
end Fin
828856

829857
theorem isOpen_set_pi {i : Set ι} {s : ∀ a, Set (π a)} (hi : i.Finite)

0 commit comments

Comments
 (0)