@@ -270,8 +270,8 @@ section Topology
270
270
variable [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [Nonempty ι]
271
271
272
272
/-- The proposition that the topology of `E` is induced by a family of seminorms `p`. -/
273
- structure WithSeminorms (p : SeminormFamily 𝕜 E ι) [t : TopologicalSpace E] : Prop where
274
- topology_eq_withSeminorms : t = p.moduleFilterBasis.topology
273
+ structure WithSeminorms (p : SeminormFamily 𝕜 E ι) [topology : TopologicalSpace E] : Prop where
274
+ topology_eq_withSeminorms : topology = p.moduleFilterBasis.topology
275
275
#align with_seminorms WithSeminorms
276
276
277
277
theorem WithSeminorms.withSeminorms_eq {p : SeminormFamily 𝕜 E ι} [t : TopologicalSpace E]
@@ -448,16 +448,15 @@ theorem WithSeminorms.continuous_seminorm [NontriviallyNormedField 𝕝] [Module
448
448
each seminorm individually. We express this as a characterization of `WithSeminorms p`. -/
449
449
theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf (p : SeminormFamily 𝕜 E ι) :
450
450
WithSeminorms p ↔
451
- t = ⨅ i,
452
- (p i).toAddGroupSeminorm.toSeminormedAddCommGroup.toUniformSpace.toTopologicalSpace := by
451
+ t = ⨅ i, (p i).toSeminormedAddCommGroup.toUniformSpace.toTopologicalSpace := by
453
452
rw [p.withSeminorms_iff_nhds_eq_iInf,
454
453
TopologicalAddGroup.ext_iff inferInstance (topologicalAddGroup_iInf fun i => inferInstance),
455
454
nhds_iInf]
456
455
-- Porting note: next three lines was `congrm (_ = ⨅ i, _)`
457
456
refine Eq.to_iff ?_
458
457
congr
459
458
funext i
460
- exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm. toSeminormedAddGroup
459
+ exact @comap_norm_nhds_zero _ (p i).toSeminormedAddGroup
461
460
#align seminorm_family.with_seminorms_iff_topological_space_eq_infi SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf
462
461
463
462
end TopologicalSpace
@@ -467,8 +466,7 @@ induced by each seminorm individually. We express this as a characterization of
467
466
`WithSeminorms p`. -/
468
467
theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf [u : UniformSpace E]
469
468
[UniformAddGroup E] (p : SeminormFamily 𝕜 E ι) :
470
- WithSeminorms p ↔
471
- u = ⨅ i, (p i).toAddGroupSeminorm.toSeminormedAddCommGroup.toUniformSpace := by
469
+ WithSeminorms p ↔ u = ⨅ i, (p i).toSeminormedAddCommGroup.toUniformSpace := by
472
470
rw [p.withSeminorms_iff_nhds_eq_iInf,
473
471
UniformAddGroup.ext_iff inferInstance (uniformAddGroup_iInf fun i => inferInstance),
474
472
toTopologicalSpace_iInf, nhds_iInf]
@@ -798,7 +796,7 @@ variable [TopologicalSpace F] [TopologicalAddGroup F]
798
796
799
797
theorem LinearMap.withSeminorms_induced [hι : Nonempty ι] {q : SeminormFamily 𝕜₂ F ι}
800
798
(hq : WithSeminorms q) (f : E →ₛₗ[σ₁₂] F) :
801
- @ WithSeminorms 𝕜 E ι _ _ _ _ (q.comp f) (induced f inferInstance ) := by
799
+ WithSeminorms (topology := induced f inferInstance) (q.comp f) := by
802
800
letI : TopologicalSpace E := induced f inferInstance
803
801
letI : TopologicalAddGroup E := topologicalAddGroup_induced f
804
802
rw [(q.comp f).withSeminorms_iff_nhds_eq_iInf, nhds_induced, map_zero,
@@ -813,6 +811,20 @@ theorem Inducing.withSeminorms [hι : Nonempty ι] {q : SeminormFamily 𝕜₂ F
813
811
exact f.withSeminorms_induced hq
814
812
#align inducing.with_seminorms Inducing.withSeminorms
815
813
814
+ /-- (Disjoint) union of seminorm families. -/
815
+ protected def SeminormFamily.sigma {κ : ι → Type _} (p : (i : ι) → SeminormFamily 𝕜 E (κ i)) :
816
+ SeminormFamily 𝕜 E ((i : ι) × κ i) :=
817
+ fun ⟨i, k⟩ => p i k
818
+
819
+ theorem withSeminorms_iInf {κ : ι → Type _} [Nonempty ((i : ι) × κ i)] [∀ i, Nonempty (κ i)]
820
+ {p : (i : ι) → SeminormFamily 𝕜 E (κ i)} {t : ι → TopologicalSpace E}
821
+ [∀ i, @TopologicalAddGroup E (t i) _] (hp : ∀ i, WithSeminorms (topology := t i) (p i)) :
822
+ WithSeminorms (topology := ⨅ i, t i) (SeminormFamily.sigma p) := by
823
+ haveI : @TopologicalAddGroup E (⨅ i, t i) _ := topologicalAddGroup_iInf (fun i ↦ inferInstance)
824
+ simp_rw [@SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf _ _ _ _ _ _ _ (_)] at hp ⊢
825
+ rw [iInf_sigma]
826
+ exact iInf_congr hp
827
+
816
828
end TopologicalConstructions
817
829
818
830
section TopologicalProperties
0 commit comments