@@ -32,20 +32,15 @@ instance [h : Inv α] : Inv αᵒᵈ := h
32
32
@[to_additive]
33
33
instance [h : Div α] : Div αᵒᵈ := h
34
34
35
- @[to_additive]
36
- instance [h : SMul α β] : SMul α βᵒᵈ := h
37
-
38
- @[to_additive]
39
- instance instSMulOrderDual' [h : SMul α β] : SMul αᵒᵈ β := h
40
- #align order_dual.has_smul' instSMulOrderDual'
41
-
42
- @[to_additive]
35
+ @[to_additive (reorder := 1)]
43
36
instance [h : Pow α β] : Pow αᵒᵈ β := h
44
37
#align order_dual.has_pow instPowOrderDual
38
+ #align order_dual.has_smul instSMulOrderDual
45
39
46
- @[to_additive]
40
+ @[to_additive (reorder := 1) ]
47
41
instance instPowOrderDual' [h : Pow α β] : Pow α βᵒᵈ := h
48
42
#align order_dual.has_pow' instPowOrderDual'
43
+ #align order_dual.has_smul' instSMulOrderDual'
49
44
50
45
@[to_additive]
51
46
instance [h : Semigroup α] : Semigroup αᵒᵈ := h
@@ -130,35 +125,19 @@ theorem toDual_div [Div α] (a b : α) : toDual (a / b) = toDual a / toDual b :=
130
125
theorem ofDual_div [Div α] (a b : αᵒᵈ) : ofDual (a / b) = ofDual a / ofDual b := rfl
131
126
#align of_dual_div ofDual_div
132
127
133
- @[simp, to_additive]
134
- theorem toDual_smul [SMul α β] (a : α) (b : β) : toDual (a • b) = a • toDual b := rfl
135
- #align to_dual_smul toDual_smul
136
-
137
- @[simp, to_additive]
138
- theorem ofDual_smul [SMul α β] (a : α) (b : βᵒᵈ) : ofDual (a • b) = a • ofDual b := rfl
139
- #align of_dual_smul ofDual_smul
140
-
141
- @[simp, to_additive]
142
- theorem toDual_smul' [SMul α β] (a : α) (b : β) : toDual a • b = a • b := rfl
143
- #align to_dual_smul' toDual_smul'
144
-
145
- @[simp, to_additive]
146
- theorem ofDual_smul' [SMul α β] (a : αᵒᵈ) (b : β) : ofDual a • b = a • b := rfl
147
- #align of_dual_smul' ofDual_smul'
148
-
149
- @[simp, to_additive, to_additive_reorder 1 4]
128
+ @[simp, to_additive (reorder := 1 4)]
150
129
theorem toDual_pow [Pow α β] (a : α) (b : β) : toDual (a ^ b) = toDual a ^ b := rfl
151
130
#align to_dual_pow toDual_pow
152
131
153
- @[simp, to_additive, to_additive_reorder 1 4]
132
+ @[simp, to_additive (reorder := 1 4) ]
154
133
theorem ofDual_pow [Pow α β] (a : αᵒᵈ) (b : β) : ofDual (a ^ b) = ofDual a ^ b := rfl
155
134
#align of_dual_pow ofDual_pow
156
135
157
- @[simp, to_additive toDual_smul', to_additive_reorder 1 4]
136
+ @[simp, to_additive toDual_smul' (reorder := 1 4) ]
158
137
theorem pow_toDual [Pow α β] (a : α) (b : β) : a ^ toDual b = a ^ b := rfl
159
138
#align pow_to_dual pow_toDual
160
139
161
- @[simp, to_additive ofDual_smul', to_additive_reorder 1 4]
140
+ @[simp, to_additive ofDual_smul' (reorder := 1 4) ]
162
141
theorem pow_ofDual [Pow α β] (a : α) (b : βᵒᵈ) : a ^ ofDual b = a ^ b := rfl
163
142
#align pow_of_dual pow_ofDual
164
143
@@ -177,20 +156,15 @@ instance [h : Inv α] : Inv (Lex α) := h
177
156
@[to_additive]
178
157
instance [h : Div α] : Div (Lex α) := h
179
158
180
- @[to_additive]
181
- instance [h : SMul α β] : SMul α (Lex β) := h
182
-
183
- @[to_additive]
184
- instance instSMulLex' [h : SMul α β] : SMul (Lex α) β := h
185
- #align lex.has_smul' instSMulLex'
186
-
187
- @[to_additive]
159
+ @[to_additive (reorder := 1)]
188
160
instance [h : Pow α β] : Pow (Lex α) β := h
189
161
#align lex.has_pow instPowLex
162
+ #align lex.has_smul instSMulLex
190
163
191
- @[to_additive]
164
+ @[to_additive (reorder := 1) ]
192
165
instance instPowLex' [h : Pow α β] : Pow α (Lex β) := h
193
166
#align lex.has_pow' instPowLex'
167
+ #align lex.has_smul' instSMulLex'
194
168
195
169
@[to_additive]
196
170
instance [h : Semigroup α] : Semigroup (Lex α) := h
@@ -275,34 +249,23 @@ theorem toLex_div [Div α] (a b : α) : toLex (a / b) = toLex a / toLex b := rfl
275
249
theorem ofLex_div [Div α] (a b : Lex α) : ofLex (a / b) = ofLex a / ofLex b := rfl
276
250
#align of_lex_div ofLex_div
277
251
278
- @[simp, to_additive]
279
- theorem toLex_smul [SMul α β] (a : α) (b : β) : toLex (a • b) = a • toLex b := rfl
280
- #align to_lex_smul toLex_smul
281
-
282
- @[simp, to_additive]
283
- theorem ofLex_smul [SMul α β] (a : α) (b : Lex β) : ofLex (a • b) = a • ofLex b := rfl
284
- #align of_lex_smul ofLex_smul
285
-
286
- @[simp, to_additive]
287
- theorem toLex_smul' [SMul α β] (a : α) (b : β) : toLex a • b = a • b := rfl
288
- #align to_lex_smul' toLex_smul'
289
-
290
- @[simp, to_additive]
291
- theorem ofLex_smul' [SMul α β] (a : Lex α) (b : β) : ofLex a • b = a • b := rfl
292
- #align of_lex_smul' ofLex_smul'
293
-
294
- @[simp, to_additive, to_additive_reorder 1 4]
252
+ @[simp, to_additive (reorder := 1 4)]
295
253
theorem toLex_pow [Pow α β] (a : α) (b : β) : toLex (a ^ b) = toLex a ^ b := rfl
296
254
#align to_lex_pow toLex_pow
297
255
298
- @[simp, to_additive, to_additive_reorder 1 4]
256
+ @[simp, to_additive (reorder := 1 4) ]
299
257
theorem ofLex_pow [Pow α β] (a : Lex α) (b : β) : ofLex (a ^ b) = ofLex a ^ b := rfl
300
258
#align of_lex_pow ofLex_pow
301
259
302
- @[simp, to_additive toLex_smul, to_additive_reorder 1 4]
260
+ @[simp, to_additive toLex_smul' (reorder := 1 4) ]
303
261
theorem pow_toLex [Pow α β] (a : α) (b : β) : a ^ toLex b = a ^ b := rfl
304
262
#align pow_to_lex pow_toLex
305
263
306
- @[simp, to_additive ofLex_smul, to_additive_reorder 1 4]
264
+ @[simp, to_additive ofLex_smul' (reorder := 1 4) ]
307
265
theorem pow_ofLex [Pow α β] (a : α) (b : Lex β) : a ^ ofLex b = a ^ b := rfl
308
266
#align pow_of_lex pow_ofLex
267
+
268
+ attribute [to_additive] instSMulOrderDual instSMulOrderDual'
269
+ toDual_smul ofDual_smul toDual_smul' ofDual_smul'
270
+ instSMulLex instSMulLex'
271
+ toLex_smul ofLex_smul toLex_smul' ofLex_smul'
0 commit comments