Skip to content

Commit c118ded

Browse files
kkytolakkytola
andcommitted
feat: Levy-Prokhorov distance pseudometrizes convergence in distribution (#11549)
Add the more interesting direction of topology comparison for the Lévy-Prokhorov distance. Conclude that if the underlying space is separable, then the topology of convergence in distribution coincides with the one obtained from the Lévy-Prokhorov (pseudo)metric. In particular the topology of convergence in distribution is (pseudo)metrizable, and so first countable. Co-authored-by: kkytola <39528102+kkytola@users.noreply.github.com> Co-authored-by: kkytola <“kalle.kytola@aalto.fi”>
1 parent 22254e6 commit c118ded

File tree

6 files changed

+328
-15
lines changed

6 files changed

+328
-15
lines changed

Mathlib/Data/Set/Lattice.lean

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2092,6 +2092,22 @@ theorem disjoint_sUnion_right {s : Set α} {S : Set (Set α)} :
20922092
disjoint_sSup_iff
20932093
#align set.disjoint_sUnion_right Set.disjoint_sUnion_right
20942094

2095+
lemma biUnion_compl_eq_of_pairwise_disjoint_of_iUnion_eq_univ {ι : Type*} {Es : ι → Set α}
2096+
(Es_union : ⋃ i, Es i = univ) (Es_disj : Pairwise fun i j ↦ Disjoint (Es i) (Es j))
2097+
(I : Set ι) :
2098+
(⋃ i ∈ I, Es i)ᶜ = ⋃ i ∈ Iᶜ, Es i := by
2099+
ext x
2100+
obtain ⟨i, hix⟩ : ∃ i, x ∈ Es i := by simp [← mem_iUnion, Es_union]
2101+
have obs : ∀ (J : Set ι), x ∈ ⋃ j ∈ J, Es j ↔ i ∈ J := by
2102+
refine fun J ↦ ⟨?_, fun i_in_J ↦ by simpa only [mem_iUnion, exists_prop] using ⟨i, i_in_J, hix⟩⟩
2103+
intro x_in_U
2104+
simp only [mem_iUnion, exists_prop] at x_in_U
2105+
obtain ⟨j, j_in_J, hjx⟩ := x_in_U
2106+
rwa [show i = j by by_contra i_ne_j; exact Disjoint.ne_of_mem (Es_disj i_ne_j) hix hjx rfl]
2107+
have obs' : ∀ (J : Set ι), x ∈ (⋃ j ∈ J, Es j)ᶜ ↔ i ∉ J :=
2108+
fun J ↦ by simpa only [mem_compl_iff, not_iff_not] using obs J
2109+
rw [obs, obs', mem_compl_iff]
2110+
20952111
end Set
20962112

20972113
end Disjoint

0 commit comments

Comments
 (0)