@@ -70,13 +70,14 @@ set_option linter.uppercaseLean3 false in
70
70
71
71
@[simp]
72
72
theorem Spec.topMap_id (R : CommRingCat.{u}) : Spec.topMap (𝟙 R) = 𝟙 (Spec.topObj R) :=
73
- PrimeSpectrum.comap_id
73
+ rfl
74
74
set_option linter.uppercaseLean3 false in
75
75
#align algebraic_geometry.Spec.Top_map_id AlgebraicGeometry.Spec.topMap_id
76
76
77
+ @[simp]
77
78
theorem Spec.topMap_comp {R S T : CommRingCat.{u}} (f : R ⟶ S) (g : S ⟶ T) :
78
79
Spec.topMap (f ≫ g) = Spec.topMap g ≫ Spec.topMap f :=
79
- PrimeSpectrum.comap_comp _ _
80
+ rfl
80
81
set_option linter.uppercaseLean3 false in
81
82
#align algebraic_geometry.Spec.Top_map_comp AlgebraicGeometry.Spec.topMap_comp
82
83
@@ -88,8 +89,6 @@ set_option linter.uppercaseLean3 false in
88
89
def Spec.toTop : CommRingCat.{u}ᵒᵖ ⥤ TopCat where
89
90
obj R := Spec.topObj (unop R)
90
91
map {R S} f := Spec.topMap f.unop
91
- map_id R := by dsimp; rw [Spec.topMap_id]
92
- map_comp {R S T} f g := by dsimp; rw [Spec.topMap_comp]
93
92
set_option linter.uppercaseLean3 false in
94
93
#align algebraic_geometry.Spec.to_Top AlgebraicGeometry.Spec.toTop
95
94
@@ -120,11 +119,10 @@ set_option linter.uppercaseLean3 false in
120
119
theorem Spec.sheafedSpaceMap_id {R : CommRingCat.{u}} :
121
120
Spec.sheafedSpaceMap (𝟙 R) = 𝟙 (Spec.sheafedSpaceObj R) :=
122
121
AlgebraicGeometry.PresheafedSpace.Hom.ext _ _ (Spec.topMap_id R) <| by
123
- ext U
122
+ ext
124
123
dsimp
125
- erw [PresheafedSpace.id_c_app, comap_id]; swap
126
- · rw [Spec.topMap_id, TopologicalSpace.Opens.map_id_obj_unop]
127
- simp [eqToHom_map]
124
+ erw [comap_id (by simp)]
125
+ simp
128
126
set_option linter.uppercaseLean3 false in
129
127
#align algebraic_geometry.Spec.SheafedSpace_map_id AlgebraicGeometry.Spec.sheafedSpaceMap_id
130
128
0 commit comments