@@ -405,10 +405,9 @@ variable [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousSMul ℝ E]
405
405
/-- If `s` is a convex neighborhood of the origin in a topological real vector space, then `gauge s`
406
406
is continuous. If the ambient space is a normed space, then `gauge s` is Lipschitz continuous, see
407
407
`Convex.lipschitz_gauge`. -/
408
- theorem continuous_gauge (hc : Convex ℝ s) (hs₀ : s ∈ 𝓝 0 ) : Continuous (gauge s) := by
408
+ theorem continuousAt_gauge (hc : Convex ℝ s) (hs₀ : s ∈ 𝓝 0 ) : ContinuousAt (gauge s) x := by
409
409
have ha : Absorbent ℝ s := absorbent_nhds_zero hs₀
410
- simp only [continuous_iff_continuousAt, ContinuousAt, (nhds_basis_Icc_pos _).tendsto_right_iff]
411
- intro x ε hε₀
410
+ refine (nhds_basis_Icc_pos _).tendsto_right_iff.2 fun ε hε₀ ↦ ?_
412
411
rw [← map_add_left_nhds_zero, eventually_map]
413
412
have : ε • s ∩ -(ε • s) ∈ 𝓝 0
414
413
· exact inter_mem ((set_smul_mem_nhds_zero_iff hε₀.ne').2 hs₀)
@@ -424,6 +423,13 @@ theorem continuous_gauge (hc : Convex ℝ s) (hs₀ : s ∈ 𝓝 0) : Continuous
424
423
gauge s (x + y) ≤ gauge s x + gauge s y := gauge_add_le hc ha _ _
425
424
_ ≤ gauge s x + ε := add_le_add_left (gauge_le_of_mem hε₀.le hy.1 ) _
426
425
426
+ /-- If `s` is a convex neighborhood of the origin in a topological real vector space, then `gauge s`
427
+ is continuous. If the ambient space is a normed space, then `gauge s` is Lipschitz continuous, see
428
+ `Convex.lipschitz_gauge`. -/
429
+ @[continuity]
430
+ theorem continuous_gauge (hc : Convex ℝ s) (hs₀ : s ∈ 𝓝 0 ) : Continuous (gauge s) :=
431
+ continuous_iff_continuousAt.2 fun _ ↦ continuousAt_gauge hc hs₀
432
+
427
433
theorem gauge_lt_one_eq_interior (hc : Convex ℝ s) (hs₀ : s ∈ 𝓝 0 ) :
428
434
{ x | gauge s x < 1 } = interior s := by
429
435
refine Subset.antisymm (fun x hx ↦ ?_) (interior_subset_gauge_lt_one s)
0 commit comments