File tree Expand file tree Collapse file tree 1 file changed +17
-0
lines changed Expand file tree Collapse file tree 1 file changed +17
-0
lines changed Original file line number Diff line number Diff line change @@ -118,6 +118,15 @@ lemma hom_ext {T X Y : C} (f g : T ⟶ X ⊗ Y)
118
118
f = g :=
119
119
(product X Y).isLimit.hom_ext fun ⟨j⟩ => j.recOn h_fst h_snd
120
120
121
+ -- Similarly to `CategoryTheory.Limits.prod.comp_lift`, we do not make the `assoc` version a simp
122
+ -- lemma
123
+ @[reassoc, simp]
124
+ lemma comp_lift {V W X Y : C} (f : V ⟶ W) (g : W ⟶ X) (h : W ⟶ Y) :
125
+ f ≫ lift g h = lift (f ≫ g) (f ≫ h) := by ext <;> simp
126
+
127
+ @[simp]
128
+ lemma lift_fst_snd {X Y : C} : lift (fst X Y) (snd X Y) = 𝟙 (X ⊗ Y) := by ext <;> simp
129
+
121
130
@[reassoc (attr := simp)]
122
131
lemma tensorHom_fst {X₁ X₂ Y₁ Y₂ : C} (f : X₁ ⟶ X₂) (g : Y₁ ⟶ Y₂) :
123
132
(f ⊗ g) ≫ fst _ _ = fst _ _ ≫ f := lift_fst _ _
@@ -126,6 +135,14 @@ lemma tensorHom_fst {X₁ X₂ Y₁ Y₂ : C} (f : X₁ ⟶ X₂) (g : Y₁ ⟶
126
135
lemma tensorHom_snd {X₁ X₂ Y₁ Y₂ : C} (f : X₁ ⟶ X₂) (g : Y₁ ⟶ Y₂) :
127
136
(f ⊗ g) ≫ snd _ _ = snd _ _ ≫ g := lift_snd _ _
128
137
138
+ @[reassoc (attr := simp)]
139
+ lemma lift_map {V W X Y Z : C} (f : V ⟶ W) (g : V ⟶ X) (h : W ⟶ Y) (k : X ⟶ Z) :
140
+ lift f g ≫ (h ⊗ k) = lift (f ≫ h) (g ≫ k) := by ext <;> simp
141
+
142
+ @[simp]
143
+ lemma lift_fst_comp_snd_comp {W X Y Z : C} (g : W ⟶ X) (g' : Y ⟶ Z) :
144
+ lift (fst _ _ ≫ g) (snd _ _ ≫ g') = g ⊗ g' := by ext <;> simp
145
+
129
146
@[reassoc (attr := simp)]
130
147
lemma whiskerLeft_fst (X : C) {Y₁ Y₂ : C} (g : Y₁ ⟶ Y₂) :
131
148
(X ◁ g) ≫ fst _ _ = fst _ _ :=
You can’t perform that action at this time.
0 commit comments