@@ -79,7 +79,7 @@ variable {f : E → F} {x : E} {s : Set E}
79
79
/-- A function which is analytic within a set is strictly differentiable there. Since we
80
80
don't have a predicate `HasStrictFDerivWithinAt`, we spell out what it would mean. -/
81
81
theorem HasFPowerSeriesWithinAt.hasStrictFDerivWithinAt (h : HasFPowerSeriesWithinAt f p s x) :
82
- (fun y ↦ f y.1 - f y.2 - (( continuousMultilinearCurryFin1 𝕜 E F) (p 1 )) (y.1 - y.2 ))
82
+ (fun y ↦ f y.1 - f y.2 - (continuousMultilinearCurryFin1 𝕜 E F (p 1 )) (y.1 - y.2 ))
83
83
=o[𝓝[insert x s ×ˢ insert x s] (x, x)] fun y ↦ y.1 - y.2 := by
84
84
refine h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right ?_)
85
85
refine isLittleO_iff_exists_eq_mul.2 ⟨fun y => ‖y - (x, x)‖, ?_, EventuallyEq.rfl⟩
@@ -156,7 +156,7 @@ theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F]
156
156
(h.analyticAt_of_mem hy).differentiableWithinAt
157
157
158
158
theorem AnalyticOn.differentiableOn (h : AnalyticOn 𝕜 f s) : DifferentiableOn 𝕜 f s :=
159
- fun y hy ↦ (h y hy).differentiableWithinAt.mono (by simp)
159
+ fun y hy ↦ (h y hy).differentiableWithinAt.mono (by simp)
160
160
161
161
theorem AnalyticOnNhd.differentiableOn (h : AnalyticOnNhd 𝕜 f s) : DifferentiableOn 𝕜 f s :=
162
162
fun y hy ↦ (h y hy).differentiableWithinAt
@@ -376,7 +376,7 @@ protected lemma AnalyticOn.hasFTaylorSeriesUpToOn {n : WithTop ℕ∞}
376
376
377
377
lemma AnalyticOn.exists_hasFTaylorSeriesUpToOn
378
378
(h : AnalyticOn 𝕜 f s) (hu : UniqueDiffOn 𝕜 s) :
379
- ∃ ( p : E → FormalMultilinearSeries 𝕜 E F) ,
379
+ ∃ p : E → FormalMultilinearSeries 𝕜 E F,
380
380
HasFTaylorSeriesUpToOn ⊤ f p s ∧ ∀ i, AnalyticOn 𝕜 (fun x ↦ p x i) s :=
381
381
⟨ftaylorSeriesWithin 𝕜 f s, h.hasFTaylorSeriesUpToOn hu, h.iteratedFDerivWithin hu⟩
382
382
0 commit comments