|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Anatole Dedecker. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Anatole Dedecker |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module analysis.normed.field.infinite_sum |
| 7 | +! leanprover-community/mathlib commit 008205aa645b3f194c1da47025c5f110c8406eab |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Analysis.Normed.Field.Basic |
| 12 | +import Mathlib.Analysis.Normed.Group.InfiniteSum |
| 13 | + |
| 14 | +/-! # Multiplying two infinite sums in a normed ring |
| 15 | +
|
| 16 | +In this file, we prove various results about `(∑' x : ι, f x) * (∑' y : ι', g y)` in a normed |
| 17 | +ring. There are similar results proven in `Mathlib.Topology.Algebra.InfiniteSum` (e.g |
| 18 | +`tsum_mul_tsum`), but in a normed ring we get summability results which aren't true in general. |
| 19 | +
|
| 20 | +We first establish results about arbitrary index types, `ι` and `ι'`, and then we specialize to |
| 21 | +`ι = ι' = ℕ` to prove the Cauchy product formula |
| 22 | +(see `tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm`). |
| 23 | +-/ |
| 24 | + |
| 25 | + |
| 26 | +variable {R : Type _} {ι : Type _} {ι' : Type _} [NormedRing R] |
| 27 | + |
| 28 | +open BigOperators Classical |
| 29 | + |
| 30 | +open Finset |
| 31 | + |
| 32 | +/-! ### Arbitrary index types -/ |
| 33 | + |
| 34 | +theorem Summable.mul_of_nonneg {f : ι → ℝ} {g : ι' → ℝ} (hf : Summable f) (hg : Summable g) |
| 35 | + (hf' : 0 ≤ f) (hg' : 0 ≤ g) : Summable fun x : ι × ι' => f x.1 * g x.2 := |
| 36 | + (summable_prod_of_nonneg <| fun _ ↦ mul_nonneg (hf' _) (hg' _)).2 ⟨fun x ↦ hg.mul_left (f x), |
| 37 | + by simpa only [hg.tsum_mul_left _] using hf.mul_right (∑' x, g x)⟩ |
| 38 | +#align summable.mul_of_nonneg Summable.mul_of_nonneg |
| 39 | + |
| 40 | +theorem Summable.mul_norm {f : ι → R} {g : ι' → R} (hf : Summable fun x => ‖f x‖) |
| 41 | + (hg : Summable fun x => ‖g x‖) : Summable fun x : ι × ι' => ‖f x.1 * g x.2‖ := |
| 42 | + summable_of_nonneg_of_le (fun x => norm_nonneg (f x.1 * g x.2)) |
| 43 | + (fun x => norm_mul_le (f x.1) (g x.2)) |
| 44 | + (hf.mul_of_nonneg hg (fun x => norm_nonneg <| f x) fun x => norm_nonneg <| g x : _) |
| 45 | +#align summable.mul_norm Summable.mul_norm |
| 46 | + |
| 47 | +theorem summable_mul_of_summable_norm [CompleteSpace R] {f : ι → R} {g : ι' → R} |
| 48 | + (hf : Summable fun x => ‖f x‖) (hg : Summable fun x => ‖g x‖) : |
| 49 | + Summable fun x : ι × ι' => f x.1 * g x.2 := |
| 50 | + summable_of_summable_norm (hf.mul_norm hg) |
| 51 | +#align summable_mul_of_summable_norm summable_mul_of_summable_norm |
| 52 | + |
| 53 | +/-- Product of two infinites sums indexed by arbitrary types. |
| 54 | + See also `tsum_mul_tsum` if `f` and `g` are *not* absolutely summable. -/ |
| 55 | +theorem tsum_mul_tsum_of_summable_norm [CompleteSpace R] {f : ι → R} {g : ι' → R} |
| 56 | + (hf : Summable fun x => ‖f x‖) (hg : Summable fun x => ‖g x‖) : |
| 57 | + ((∑' x, f x) * ∑' y, g y) = ∑' z : ι × ι', f z.1 * g z.2 := |
| 58 | + tsum_mul_tsum (summable_of_summable_norm hf) (summable_of_summable_norm hg) |
| 59 | + (summable_mul_of_summable_norm hf hg) |
| 60 | +#align tsum_mul_tsum_of_summable_norm tsum_mul_tsum_of_summable_norm |
| 61 | + |
| 62 | +/-! ### `ℕ`-indexed families (Cauchy product) |
| 63 | +
|
| 64 | +We prove two versions of the Cauchy product formula. The first one is |
| 65 | +`tsum_mul_tsum_eq_tsum_sum_range_of_summable_norm`, where the `n`-th term is a sum over |
| 66 | +`Finset.range (n+1)` involving `Nat` subtraction. |
| 67 | +In order to avoid `Nat` subtraction, we also provide |
| 68 | +`tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm`, |
| 69 | +where the `n`-th term is a sum over all pairs `(k, l)` such that `k+l=n`, which corresponds to the |
| 70 | +`Finset` `Finset.Nat.antidiagonal n`. -/ |
| 71 | + |
| 72 | + |
| 73 | +section Nat |
| 74 | + |
| 75 | +open Finset.Nat |
| 76 | + |
| 77 | +theorem summable_norm_sum_mul_antidiagonal_of_summable_norm {f g : ℕ → R} |
| 78 | + (hf : Summable fun x => ‖f x‖) (hg : Summable fun x => ‖g x‖) : |
| 79 | + Summable fun n => ‖∑ kl in antidiagonal n, f kl.1 * g kl.2‖ := by |
| 80 | + have := |
| 81 | + summable_sum_mul_antidiagonal_of_summable_mul |
| 82 | + (Summable.mul_of_nonneg hf hg (fun _ => norm_nonneg _) fun _ => norm_nonneg _) |
| 83 | + refine' summable_of_nonneg_of_le (fun _ => norm_nonneg _) _ this |
| 84 | + intro n |
| 85 | + calc |
| 86 | + ‖∑ kl in antidiagonal n, f kl.1 * g kl.2‖ ≤ ∑ kl in antidiagonal n, ‖f kl.1 * g kl.2‖ := |
| 87 | + norm_sum_le _ _ |
| 88 | + _ ≤ ∑ kl in antidiagonal n, ‖f kl.1‖ * ‖g kl.2‖ := sum_le_sum fun i _ => norm_mul_le _ _ |
| 89 | + |
| 90 | +#align summable_norm_sum_mul_antidiagonal_of_summable_norm summable_norm_sum_mul_antidiagonal_of_summable_norm |
| 91 | + |
| 92 | +/-- The Cauchy product formula for the product of two infinite sums indexed by `ℕ`, |
| 93 | + expressed by summing on `Finset.Nat.antidiagonal`. |
| 94 | + See also `tsum_mul_tsum_eq_tsum_sum_antidiagonal` if `f` and `g` are |
| 95 | + *not* absolutely summable. -/ |
| 96 | +theorem tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm [CompleteSpace R] {f g : ℕ → R} |
| 97 | + (hf : Summable fun x => ‖f x‖) (hg : Summable fun x => ‖g x‖) : |
| 98 | + ((∑' n, f n) * ∑' n, g n) = ∑' n, ∑ kl in antidiagonal n, f kl.1 * g kl.2 := |
| 99 | + tsum_mul_tsum_eq_tsum_sum_antidiagonal (summable_of_summable_norm hf) |
| 100 | + (summable_of_summable_norm hg) (summable_mul_of_summable_norm hf hg) |
| 101 | +#align tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm |
| 102 | + |
| 103 | +theorem summable_norm_sum_mul_range_of_summable_norm {f g : ℕ → R} (hf : Summable fun x => ‖f x‖) |
| 104 | + (hg : Summable fun x => ‖g x‖) : Summable fun n => ‖∑ k in range (n + 1), f k * g (n - k)‖ := by |
| 105 | + simp_rw [← sum_antidiagonal_eq_sum_range_succ fun k l => f k * g l] |
| 106 | + exact summable_norm_sum_mul_antidiagonal_of_summable_norm hf hg |
| 107 | +#align summable_norm_sum_mul_range_of_summable_norm summable_norm_sum_mul_range_of_summable_norm |
| 108 | + |
| 109 | +/-- The Cauchy product formula for the product of two infinite sums indexed by `ℕ`, |
| 110 | + expressed by summing on `Finset.range`. |
| 111 | + See also `tsum_mul_tsum_eq_tsum_sum_range` if `f` and `g` are |
| 112 | + *not* absolutely summable. -/ |
| 113 | +theorem tsum_mul_tsum_eq_tsum_sum_range_of_summable_norm [CompleteSpace R] {f g : ℕ → R} |
| 114 | + (hf : Summable fun x => ‖f x‖) (hg : Summable fun x => ‖g x‖) : |
| 115 | + ((∑' n, f n) * ∑' n, g n) = ∑' n, ∑ k in range (n + 1), f k * g (n - k) := by |
| 116 | + simp_rw [← sum_antidiagonal_eq_sum_range_succ fun k l => f k * g l] |
| 117 | + exact tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm hf hg |
| 118 | +#align tsum_mul_tsum_eq_tsum_sum_range_of_summable_norm tsum_mul_tsum_eq_tsum_sum_range_of_summable_norm |
| 119 | + |
| 120 | +end Nat |
| 121 | + |
0 commit comments