Skip to content

Commit c8e33db

Browse files
committed
feat(GroupTheory): Add some results about derivedSeries (#25342)
Prove `Antitone (derivedSeries G)` and `(derivedSeries G n).Characteristic`.
1 parent 41239f9 commit c8e33db

File tree

2 files changed

+12
-0
lines changed

2 files changed

+12
-0
lines changed

Mathlib/GroupTheory/Abelianization.lean

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -56,6 +56,10 @@ theorem Subgroup.map_subtype_commutator (H : Subgroup G) :
5656
(_root_.commutator H).map H.subtype = ⁅H, H⁆ := by
5757
rw [_root_.commutator_def, map_commutator, ← MonoidHom.range_eq_map, H.range_subtype]
5858

59+
variable {G} in
60+
theorem Subgroup.commutator_le_self (H : Subgroup G) : ⁅H, H⁆ ≤ H :=
61+
H.map_subtype_commutator.symm.trans_le (map_subtype_le _)
62+
5963
instance commutator_characteristic : (commutator G).Characteristic :=
6064
Subgroup.commutator_characteristic ⊤ ⊤
6165

Mathlib/GroupTheory/Solvable.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -54,6 +54,14 @@ theorem derivedSeries_normal (n : ℕ) : (derivedSeries G n).Normal := by
5454
theorem derivedSeries_one : derivedSeries G 1 = commutator G :=
5555
rfl
5656

57+
theorem derivedSeries_antitone : Antitone (derivedSeries G) :=
58+
antitone_nat_of_succ_le fun n => (derivedSeries G n).commutator_le_self
59+
60+
instance derivedSeries_characteristic (n : ℕ) : (derivedSeries G n).Characteristic := by
61+
induction n with
62+
| zero => exact Subgroup.topCharacteristic
63+
| succ n _ => exact Subgroup.commutator_characteristic _ _
64+
5765
end derivedSeries
5866

5967
section CommutatorMap

0 commit comments

Comments
 (0)