@@ -321,6 +321,19 @@ structure PropertyIsLocalAtTarget (P : MorphismProperty Scheme) : Prop where
321
321
(∀ i : 𝒰.J, P (pullback.snd : (𝒰.pullbackCover f).obj i ⟶ 𝒰.obj i)) → P f
322
322
#align algebraic_geometry.property_is_local_at_target AlgebraicGeometry.PropertyIsLocalAtTarget
323
323
324
+ lemma propertyIsLocalAtTarget_of_morphismRestrict (P : MorphismProperty Scheme)
325
+ (hP₁ : P.RespectsIso)
326
+ (hP₂ : ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) (U : Opens Y.carrier), P f → P (f ∣_ U))
327
+ (hP₃ : ∀ {X Y : Scheme.{u}} (f : X ⟶ Y) {ι : Type u} (U : ι → Opens Y.carrier)
328
+ (_ : iSup U = ⊤), (∀ i, P (f ∣_ U i)) → P f) :
329
+ PropertyIsLocalAtTarget P where
330
+ RespectsIso := hP₁
331
+ restrict := hP₂
332
+ of_openCover {X Y} f 𝒰 h𝒰 := by
333
+ apply hP₃ f (fun i : 𝒰.J => Scheme.Hom.opensRange (𝒰.map i)) 𝒰.iSup_opensRange
334
+ simp_rw [hP₁.arrow_mk_iso_iff (morphismRestrictOpensRange f _)]
335
+ exact h𝒰
336
+
324
337
theorem AffineTargetMorphismProperty.IsLocal.targetAffineLocallyIsLocal
325
338
{P : AffineTargetMorphismProperty} (hP : P.IsLocal) :
326
339
PropertyIsLocalAtTarget (targetAffineLocally P) := by
@@ -602,10 +615,69 @@ theorem universallyIsLocalAtTargetOfMorphismRestrict (P : MorphismProperty Schem
602
615
exact h𝒰)
603
616
#align algebraic_geometry.universally_is_local_at_target_of_morphism_restrict AlgebraicGeometry.universallyIsLocalAtTargetOfMorphismRestrict
604
617
618
+ theorem morphismRestrict_base {X Y : Scheme} (f : X ⟶ Y) (U : Opens Y.carrier) :
619
+ ⇑(f ∣_ U).1 .base = U.1 .restrictPreimage f.1 .1 :=
620
+ funext fun x => Subtype.ext <| morphismRestrict_base_coe f U x
621
+ #align algebraic_geometry.morphism_restrict_base AlgebraicGeometry.morphismRestrict_base
622
+
605
623
/-- `topologically P` holds for a morphism if the underlying topological map satisfies `P`. -/
606
624
def MorphismProperty.topologically
607
625
(P : ∀ {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] (_ : α → β), Prop ) :
608
626
MorphismProperty Scheme.{u} := fun _ _ f => P f.1 .base
609
627
#align algebraic_geometry.morphism_property.topologically AlgebraicGeometry.MorphismProperty.topologically
610
628
629
+ variable (P : ∀ {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] (_ : α → β), Prop )
630
+
631
+ /-- If a property of maps of topological spaces is stable under composition, the induced
632
+ morphism property of schemes is stable under composition. -/
633
+ lemma MorphismProperty.topologically_isStableUnderComposition
634
+ (hP : ∀ {α β γ : Type u} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
635
+ (f : α → β) (g : β → γ) (_ : P f) (_ : P g), P (g ∘ f)) :
636
+ (MorphismProperty.topologically P).IsStableUnderComposition where
637
+ comp_mem {X Y Z} f g hf hg := by
638
+ simp only [MorphismProperty.topologically, Scheme.comp_coeBase, TopCat.coe_comp]
639
+ exact hP _ _ hf hg
640
+
641
+ /-- If a property of maps of topological spaces is satisfied by all homeomorphisms,
642
+ every isomorphism of schemes satisfies the induced property. -/
643
+ lemma MorphismProperty.topologically_iso_le
644
+ (hP : ∀ {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β), P f) :
645
+ MorphismProperty.isomorphisms Scheme ≤ (MorphismProperty.topologically P) := by
646
+ intro X Y e (he : IsIso e)
647
+ have : IsIso e := he
648
+ exact hP (TopCat.homeoOfIso (asIso e.val.base))
649
+
650
+ /-- If a property of maps of topological spaces is satisfied by homeomorphisms and is stable
651
+ under composition, the induced property on schemes respects isomorphisms. -/
652
+ lemma MorphismProperty.topologically_respectsIso
653
+ (hP₁ : ∀ {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β), P f)
654
+ (hP₂ : ∀ {α β γ : Type u} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
655
+ (f : α → β) (g : β → γ) (_ : P f) (_ : P g), P (g ∘ f)) :
656
+ (MorphismProperty.topologically P).RespectsIso :=
657
+ have : (MorphismProperty.topologically P).IsStableUnderComposition :=
658
+ topologically_isStableUnderComposition P hP₂
659
+ MorphismProperty.respectsIso_of_isStableUnderComposition (topologically_iso_le P hP₁)
660
+
661
+ /-- To check that a topologically defined morphism property is local at the target,
662
+ we may check the corresponding properties on topological spaces. -/
663
+ lemma MorphismProperty.topologically_propertyIsLocalAtTarget
664
+ (hP₁ : (MorphismProperty.topologically P).RespectsIso)
665
+ (hP₂ : ∀ {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] (f : α → β) (s : Set β),
666
+ P f → P (s.restrictPreimage f))
667
+ (hP₃ : ∀ {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] (f : α → β) {ι : Type u}
668
+ (U : ι → TopologicalSpace.Opens β) (_ : iSup U = ⊤) (_ : Continuous f),
669
+ (∀ i, P ((U i).carrier.restrictPreimage f)) → P f) :
670
+ PropertyIsLocalAtTarget (MorphismProperty.topologically P) := by
671
+ apply propertyIsLocalAtTarget_of_morphismRestrict
672
+ · exact hP₁
673
+ · intro X Y f U hf
674
+ simp_rw [MorphismProperty.topologically, morphismRestrict_base]
675
+ exact hP₂ f.val.base U.carrier hf
676
+ · intro X Y f ι U hU hf
677
+ apply hP₃ f.val.base U hU
678
+ · exact f.val.base.continuous
679
+ · intro i
680
+ rw [← morphismRestrict_base]
681
+ exact hf i
682
+
611
683
end AlgebraicGeometry
0 commit comments